Question

In: Statistics and Probability

(4 pts)The playing life of a sunshine radio is normally distributed with a mean of 500...

  1. (4 pts)The playing life of a sunshine radio is normally distributed with a mean of 500 hours and a standard deviation of 60 hours.
  1. What percent of the radios will last from 500 to 620 hours?

  1. What percent of radios will last less than 500 hours?
  1. What percent of radios will play between 560 and 620 hours?

Solutions

Expert Solution


Related Solutions

The life of Sunshine CD players is normally distributed with a mean of 4.2 years and...
The life of Sunshine CD players is normally distributed with a mean of 4.2 years and a standard deviation of 1.3 years. A CD player is guaranteed for 3 years. 1. We are interested in the length of time a CD player lasts. a. Find the probability that a CD player will break down during the guarantee period. P(0<x<____) = _______ b. Sketch and shade a normal curve to indicate the probability we are interested in. Be sure to label...
The life of a ventilator is normally distributed with a mean of 9000 hours and a...
The life of a ventilator is normally distributed with a mean of 9000 hours and a standard deviation of 500 hours. (a) What is the probability that the ventilator fails before 8000 hours? (b) What is the life in hours that is exceeded by 96% of the ventilators? (c ) If 20 such ventilators are used in a hospital, and they are assumed to fail independently, what is the probability that all 20 are still operating after 7500 hours?
3)   Scores on the SAT are normally distributed with a mean of 500 and a standard...
3)   Scores on the SAT are normally distributed with a mean of 500 and a standard deviation of 100 What is the probability of obtaining a score greater than 640? What is the probability of obtaining a score less than 390? What is the probability of obtaining a score between 725 and 800? What is the probability of obtaining a score either less than 375 or greater than 650? 4) If you obtained a score of 75 on an test,...
The lifetimes of light bulbs are normally distributed with a mean of 500 hours and a...
The lifetimes of light bulbs are normally distributed with a mean of 500 hours and a standard deviation of 25 hours. Find the probability that a randomly selected light bulb has a lifetime that is greater than 532 hours. SHOW FULL WORK!
The scores on an examination in biology are approximately normally distributed with mean 500 and an...
The scores on an examination in biology are approximately normally distributed with mean 500 and an unknown standard deviation. The following is a random sample of scores from this examination. 406, 413, 441, 477, 530, 550 Find a 99% confidence interval for the population standard deviation. Then complete the table below. Carry your intermediate computations to at least three decimal places. Round your answers to at least two decimal places. (If necessary, consult a list of formulas.) What is the...
The variable x is normally distributed with a mean of 500 and a standard deviation of...
The variable x is normally distributed with a mean of 500 and a standard deviation of 50. Find a) The 60th percentile. b)The 35th percentile. c)The x value which exceeds 80% of all x values. d)The x value that is exceeded by 80% of all x values.
The life expectancy of a brand of light bulbs is normally distributed with a mean of...
The life expectancy of a brand of light bulbs is normally distributed with a mean of 1500 hours and a standard deviation of 75 hours. A. What is the probability that a bulb will last between 1500 and 1650 hours. The life expectancy of a brand of light bulbs is normally distributed with a mean of 1500 hours and a standard deviation of 75 hours. A. What is the probability that a bulb will last between 1500 and 1650 hours....
Test scores on a university admissions test are normally distributed, with a mean of 500 and...
Test scores on a university admissions test are normally distributed, with a mean of 500 and a standard deviation of 100. d. 20% of test scores exceed what value? i know P(X>= c-500/100) = .20 but after this, i dont understand why c -500/100 =.84 where did this .84 come from?
2.) Scores on a national exam are normally distributed with a mean 500 and a standard...
2.) Scores on a national exam are normally distributed with a mean 500 and a standard deviation of 20. Find the score corresponding to the 70th percentile. use the table or excel. 3.) X is a binomial random variable with parameters n=5 and p= .5. Use the table to compute the probability indicated. P(x= 3). Round to four decimal places. 4.) A uniform distribution has a density curve that spans over the interval [3,7]. what height will the curve have...
GMAT (assume to be distributed Normally with a mean 500 and a standard deviation of 100)...
GMAT (assume to be distributed Normally with a mean 500 and a standard deviation of 100) and GRE (assume to be distributed Normally with a mean 300 and a standard deviation of 15) to select potential candidates. Candidate A has a GMAT score of 650 while candidate B has a GRE score of 320. Who is a better candidate and why?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT