In: Finance
Below are returns on the stock A and S&P500 index. All numbers are in decimals (-0.0222 is equivalent to -2.22%).
A | S_P500 |
-0.0222 | 0.0032 |
-0.0048 | -0.0058 |
0.1333 | 0.0434 |
0.0765 | 0.1081 |
-0.0161 | -0.0121 |
0.1250 | 0.1400 |
0.0145 | 0.0368 |
-0.0475 | -0.0454 |
0.0430 | 0.0577 |
-0.0260 | -0.1374 |
0.0071 | 0.0064 |
0.0249 | 0.0186 |
0.0850 | 0.0215 |
-0.0624 | -0.0752 |
0.0933 | 0.0365 |
0.0456 | 0.0528 |
-0.0632 | -0.0131 |
0.0450 | 0.0009 |
0.0200 | 0.0017 |
0.0280 | 0.0985 |
Assuming normal distribution, what is the probability that the next S&P500 return will be greater than 0?
Please write an answer in decimals. For example, 12% would be
0.12.
Also, round your answer to the second decimal.
We are assuming that the distribution of the return of the S&P 500 is normal distribution, so we will convert it into a standard normal distribution.
S&P 500 | (X-μs&p 500)2 |
0.0032 | 0.000186459 |
-0.0058 | 0.000513249 |
0.0434 | 0.000704637 |
0.1081 | 0.00832565 |
-0.0121 | 0.000838392 |
0.14 | 0.015164691 |
0.0368 | 0.000397803 |
-0.0454 | 0.003875685 |
0.0577 | 0.001668314 |
-0.1374 | 0.023794605 |
0.0064 | 0.000109307 |
0.0186 | 3.04502E-06 |
0.0215 | 2.1576E-05 |
-0.0752 | 0.008474123 |
0.0365 | 0.000385926 |
0.0528 | 0.001292043 |
-0.0131 | 0.000897302 |
0.0009 | 0.000254562 |
0.0017 | 0.000229674 |
0.0985 | 0.006665906 |
μs&p 500= 0.016855 | sum = 0.073803 |
S&P 500 | (X-μs&p 500)2 |
0.0032 | 0.000186459 |
-0.0058 | 0.000513249 |
0.0434 | 0.000704637 |
0.1081 | 0.00832565 |
-0.0121 | 0.000838392 |
0.14 | 0.015164691 |
0.0368 | 0.000397803 |
-0.0454 | 0.003875685 |
0.0577 | 0.001668314 |
-0.1374 | 0.023794605 |
0.0064 | 0.000109307 |
0.0186 | 3.04502E-06 |
0.0215 | 2.1576E-05 |
-0.0752 | 0.008474123 |
0.0365 | 0.000385926 |
0.0528 | 0.001292043 |
-0.0131 | 0.000897302 |
0.0009 | 0.000254562 |
0.0017 | 0.000229674 |
0.0985 | 0.006665906 |
μs&p 500= 0.016855 | sum = 0.073803 |
σs&p 500 = [0.073803/(20-1)]1/2 = 0.062324680
we can calculate the standard deviation from the given sample of S&P 500 return using the formula =STDEV.S(Range of S&P 500)
σs&p 500 = 0.0623247
Let X be the next return of S&P 500.
we need to calculate the probability that X > 0. i.e.,
where μ is the mean of the sample and σ is the standard deviation of the sample of S&P 500
Z = (X-μ)/σ
hence, we need to calculate that P(Z>(0-μs&p 500)/σs&p 500) = P[Z> (0 - 0.016855)/0.06232468] = P(Z> -0.2704) = 1 - P(Z < -0.2704)
From Z-distribution table we can see that P(Z < -0.2704) = 0.39342627. We can also calculate this using the excel function =NORM.S.DIST(-0.2704,TRUE) =0.39342627
Hence P(Z> -0.2704) = 1 - P(Z < -0.2701) = 1-0.39342627 = 0.60657373
Answer -> 0.61