In: Statistics and Probability
Y X1 X2 X3 4264 305657 7.17 0 4496 328476 6.20 0 4317 317164 4.61 0 4292 366745 7.02 0 4945 265518 8.61 1 4325 301995 6.88 0 4110 269334 7.23 0 4111 267631 6.27 0 4161 296350 6.49 0 4560 277223 6.37 0 4401 269189 7.05 0 4251 277133 6.34 0 4222 282892 6.94 0 4063 306639 8.56 0 4343 328405 6.71 0 4833 321773 5.82 1 4453 272319 6.82 0 4195 293880 8.38 0 4394 300867 7.72 0 4099 296872 7.67 0 4816 245674 7.72 1 4867 211944 6.45 1 4114 227996 7.22 0 4314 248328 8.50 0 4289 249894 8.08 0 4269 302660 7.26 0 4347 273848 7.39 0 4178 245743 8.12 0 4333 267673 6.75 0 4226 256506 7.79 0 4121 271854 7.89 0 3998 293225 9.01 0 4475 269121 8.01 0 4545 322812 7.21 0 4016 252225 7.85 0 4207 261365 6.14 0 4148 287645 6.76 0 4562 289666 7.92 0 4146 270051 8.19 0 4555 265239 7.55 0 4365 352466 6.94 0 4471 426908 7.25 0 5045 369989 9.65 1 4469 472476 8.20 0 4408 414102 8.02 0 4219 302507 6.72 0 4211 382686 7.23 0 4993 442782 7.61 1 4309 322303 7.39 0 4499 290455 7.99 0 4186 411750 7.83 0 4342 292087 7.77 0
Three new shipments are to be received, each with Xh1 = 282,000, Xh2 = 7.10 and Xh3 =0.0. Find a 95% prediction interval for the mean handling time for these shipments.