Question

In: Advanced Math

Determine the eigenvalues and eigenfunctions of the following operator (assume σ(x) ≡ 1): L(u) = u''−2u...

Determine the eigenvalues and eigenfunctions of the following operator (assume σ(x) ≡ 1): L(u) = u''−2u x ∈ (−1,1) with periodic boundary conditions u(−1) = u(1), u'(−1) = u'(1). Box your final answer

Solutions

Expert Solution


Related Solutions

Show that the following are eigenfunctions of the Laplacian operator and determine the eigenvalues: a. (r^-1)sinkr...
Show that the following are eigenfunctions of the Laplacian operator and determine the eigenvalues: a. (r^-1)sinkr b.( r^-3)[(sin^2)θ]sin2φ
Consider the following linear operator: L u = d^2u/dx^2+ 2 du/dx + u. Consider the eigenvalue...
Consider the following linear operator: L u = d^2u/dx^2+ 2 du/dx + u. Consider the eigenvalue problem L u + λu = 0, x ∈ (0, π), u(0) = 0, u(π) = 0. (a) Determine the possible eigenvalues and eigenfunctions. (b) Use an integrating factor to put the eigenvalue problem in Sturm-Liouville form. (c) What is the appropriate inner product for this system?
Determine the eigenvalues and the corresponding normalized eigenfunctions of the following Sturm–Liouville problem: y''(x) + λy(x)...
Determine the eigenvalues and the corresponding normalized eigenfunctions of the following Sturm–Liouville problem: y''(x) + λy(x) = 0, x ∈ [0;L], y(0) = 0, y(L) = 0,
Find the eigenvalues and eigenfunctions of the given boundary value problem. Assume that all eigenvalues are...
Find the eigenvalues and eigenfunctions of the given boundary value problem. Assume that all eigenvalues are real. (Let n represent an arbitrary positive number.) y''+λy= 0, y(0)= 0, y'(π)= 0
Determine the eigenvalues and eigenfunctions of the following regular Sturm–Liouville systems: (a) y′′ + λy =...
Determine the eigenvalues and eigenfunctions of the following regular Sturm–Liouville systems: (a) y′′ + λy = 0, y′ (0) = 0 , y′ (π) = 0. (b) y′′ + λy = 0, y (1) = 0 , y(0) + y′ (0) = 0.
Solve the wave equation, a2  ∂2u ∂x2 = ∂2u ∂t2 0 < x < L, t...
Solve the wave equation, a2  ∂2u ∂x2 = ∂2u ∂t2 0 < x < L, t > 0 (see (1) in Section 12.4) subject to the given conditions. u(0, t) = 0, u(π, t) = 0, t > 0 u(x, 0) = 0.01 sin(9πx), ∂u ∂t t = 0 = 0, 0 < x < π u(x, t) = + ∞ n = 1
Find the eigenvalues and eigenfunctions for the following boundary value problem. y"+6y'-(L-8)=0, y(0)=0, y(2)=0 L ==...
Find the eigenvalues and eigenfunctions for the following boundary value problem. y"+6y'-(L-8)=0, y(0)=0, y(2)=0 L == Lambda
Si U=(x2+y2+z2)-1/2 , demuestre que ∂2U/∂x2+∂2U/∂y2+∂2U/∂z2=0
Si U=(x2+y2+z2)-1/2 , demuestre que ∂2U/∂x2+∂2U/∂y2+∂2U/∂z2=0
Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 o<x<1 y(0)...
Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 o<x<1 y(0) = 0 y'(1) = 0 (b) Show that the eigenfunctions Yn and Ym you obtained from the above are orthogonal if n not= m.
Find the eigenvalues λn and eigenfunctions yn(x) for the given boundary-value problem. (Give your answers in...
Find the eigenvalues λn and eigenfunctions yn(x) for the given boundary-value problem. (Give your answers in terms of k, making sure that each value of k corresponds to two unique eigenvalues.) y'' + λy = 0,  y(−π) = 0,  y(π) = 0 λ2k − 1 =, k=1,2,3,... y2k − 1(x) =, k=1,2,3,... λ2k =, k=1,2,3,... y2k(x) =, k=1,2,3,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT