Question

In: Chemistry

2) Consider the equation: CHCl3(g) + Cl2(g)  CCl4(g) + HCl(g) The initial rate of reaction...

  1. 2) Consider the equation:
    CHCl3(g) + Cl2(g)  CCl4(g) + HCl(g)
    The initial rate of reaction is measured at several different concentrations of the reactants with the following results From the data, determine:
    a. the rate law for the reaction
    b. the rate constant (k) for the reaction

    CHCl3 Cl2 rate M/s
    0.125 M 0.100 M 0.0025 M/s
    0.250 M 0.100 M 0.0100 M/s
    0.250 M 0.200 M 0.0200 M/s

Solutions

Expert Solution


Related Solutions

Chloroform, CHCl3, is formed by the following reaction: CH4(g) + 3 Cl2(g) → 3 HCl(g) +...
Chloroform, CHCl3, is formed by the following reaction: CH4(g) + 3 Cl2(g) → 3 HCl(g) + CHCl3 (g) Determine the enthalpy change for this reaction (ΔH°rxn), using the following: enthalpy of formation of CHCl3 (g), ΔH°f = – 103.1 kJ/mol                                 CH4(g) + 2 O2(g) → 2 H2O(l) + CO2(g)        ΔH°rxn = – 890.4 kJ/mol                                 2 HCl (g) → H2 (g) + Cl2(g)                              ΔH°rxn = + 184.6 kJ/mol                                 C (graphite) + O2(g) → CO2(g)                     ΔH°rxn = – 393.5 kJ/mol                                 H2 (g)...
Consider the following gas-phase reaction: C2H2(g) + 4 Cl2(g) 2 CCl4(g) + H2(g) Using data from...
Consider the following gas-phase reaction: C2H2(g) + 4 Cl2(g) 2 CCl4(g) + H2(g) Using data from Appendix C of your textbook calculate the temperature, To, at which this reaction will be at equilibrium under standard conditions (Go = 0) and choose whether >Go will increase, decrease, or not change with increasing temperature from the pulldown menu. To = K, and Go will ---Select--- increase decrease not change with increasing temperature. For each of the temperatures listed below calculate Go for...
The equilibrum constant Kc is 0.01323 for the reaction: CCl4 (g) <----> C(s) + 2 Cl2...
The equilibrum constant Kc is 0.01323 for the reaction: CCl4 (g) <----> C(s) + 2 Cl2 (g) At 300k a 5L flask originally contained 0.0828M of CCl4, 0.0444 M of C and 0.0546M of Cl2. Determine the concentration of Cl2 when equilibrium is reached.
The reaction 2NO(g) + Cl2(g) --> 2NOCl(g) obeys the rate law rate = k [NO]2 [Cl2]....
The reaction 2NO(g) + Cl2(g) --> 2NOCl(g) obeys the rate law rate = k [NO]2 [Cl2]. The following mechanism is proposed: NO (g) + Cl2 (g) --> NOCl2(g) NOCl2(g) + NO (g) -->2NOCl (g) a) What would the rate law be if the first step was rate determining? b) Based on the observed rate law, what can be concluded about the relative rates of the 2 reactions?
A mixture was prepared that contained 50.0 g of CCl4 and 50.0 g of CHCl3. At...
A mixture was prepared that contained 50.0 g of CCl4 and 50.0 g of CHCl3. At 50 C, the vapor pressure of pure CCl4 is 317 torr and that of CHCl3 is 526 torr. What is the vapor pressure of this mixture at 50 C?
heat of reaction at 400c for the following reaction: HCl(g) + O2= Cl2(g) + H2O (g)...
heat of reaction at 400c for the following reaction: HCl(g) + O2= Cl2(g) + H2O (g) HHV and LHV for liquid acetone (in KJ/Kg)
1)The data below were collected for the following reaction: CH3Cl(g)+3Cl2(g)→CCl4(g)+3HCl(g) [CH3Cl](M) [Cl2](M) Initial Rate (M/s) 0.050...
1)The data below were collected for the following reaction: CH3Cl(g)+3Cl2(g)→CCl4(g)+3HCl(g) [CH3Cl](M) [Cl2](M) Initial Rate (M/s) 0.050 0.050 0.014 0.100 0.050 0.029 0.100 0.100 0.041 0.200 0.200 0.115 A Calculate the value of the rate constant, k. Express your answer using two significant figures. B What is the overall order of the reaction? Express your answer using two significant figures. 2) t (s) [A] (M) ln[A] 1/[A] 0.00 0.500 −0.693 2.00 20.0 0.389 −0.944 2.57 40.0 0.303 −1.19 3.30 60.0 0.236...
1. Consider the following reaction: SO2Cl2(g)⇌SO2(g)+Cl2(g) A reaction mixture is made containing an initial [SO2Cl2] of...
1. Consider the following reaction: SO2Cl2(g)⇌SO2(g)+Cl2(g) A reaction mixture is made containing an initial [SO2Cl2] of 2.2×10−2 M . At equilibrium, [Cl2]=1.3×10−2 M . Calculate the value of the equilibrium constant (Kc). 2. Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.17-L flask at a certain temperature initially contains 27.4 g CO and 2.36 g H2. At equilibrium, the flask contains 8.67 gCH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature. 3. Consider the following...
The chemical equation for the reaction between methane and elemental chlorine is: CH4(g) + 2 Cl2(g)...
The chemical equation for the reaction between methane and elemental chlorine is: CH4(g) + 2 Cl2(g) → CCl4(g) + 4 HCl(g) Use the provided values for enthalpies of formation and entropies of the reactants and the products to calculate the standard enthalpy, the entropy and the free Gibbs energy changes associated with the reaction (ΔrHo, ΔrSo, ΔrGo) and tell which one of the statements below describes the reaction correctly Substance ΔrHo(kJ/mol) So(J/molK) CH4(g) -74.9 186.2 Cl2(g) 0 223.0 CCl4(g) -95.98...
Consider the reaction: I2(g) + Cl2(g) ↔ 2 ICl (g) Calculate ΔGrxnfor the reaction at 25oC...
Consider the reaction: I2(g) + Cl2(g) ↔ 2 ICl (g) Calculate ΔGrxnfor the reaction at 25oC under each of the following conditions: a. Standard conditions b. At equilibrium c. PICl= 2.55 atm; PI2= 0.325 atm; PCl2= 0.221 atm
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT