Question

In: Physics

3. (a) A particle of charge q1 = +10.0 µC sits fixed at the coordinates (x...

3. (a) A particle of charge q1 = +10.0 µC sits fixed at the coordinates (x = 0, y = +0.500 m). A second identical particle (q2 = q1) sits fixed at the coordinates (x = 0, y = -0.500 m). A third particle of mass m3 = 5.00 g and charge q3 = -4.00 µC is placed at point A, located at (x = 1.00 m, y = 0). Once released from rest, the second particle moves a distance of 0.500 m to point B. (a) Where is point B? (b) What is the change in its electric potential? (c) What is the change in its potential energy? (d) What is its velocity at point B? (e) If the environment were frictionless, what would the third particle's subsequent motion be like?

Solutions

Expert Solution


Related Solutions

A particle (charge = -15.0 µC) is located on the x- axis at the point x...
A particle (charge = -15.0 µC) is located on the x- axis at the point x = -25.0 cm, and a second particle (charge = +45.0 µC) is placed on the x- axis at x = +30.0 cm. What is the magnitude of the total electrostatic force on a third particle (charge = -3.50 µC) placed at the origin (x = 0)?
A particle with charge 7 µC is located on the x-axis at the point −4 cm...
A particle with charge 7 µC is located on the x-axis at the point −4 cm , and a second particle with charge 4 µC is placed on the x-axis at 8 cm . What is the magnitude of the total electrostatic force on a third particle with charge −4 µC placed on the x-axis at 2 cm ? The Coulomb constant is 8.9875 × 109 N · m2 /C 2 . Answer in units of N.
A particle of charge -q1 is at the origin of an x axis. (a) At what...
A particle of charge -q1 is at the origin of an x axis. (a) At what location on the axis should a particle of charge -36q1 be placed so that the net electric field is zero at x = 4.8 mm on the axis? (b) If, instead, a particle of charge +36q1 is placed at that location, what is the direction (relative to the positive direction of the x axis) of the net electric field at x = 4.8 mm?
Two charges Q1( +2.00 µC) and Q2( +2.00 µC) are fixed symmetrically along the x-axis at...
Two charges Q1( +2.00 µC) and Q2( +2.00 µC) are fixed symmetrically along the x-axis at x = ± 3.00 cm. How much work must be done to assemble these charges if they are initially infinitely far apart? For this configuration, calculate the electrical potential difference between the origin and the point P, which is located on the y-axis 4.00 cm above the origin. Now a third charge Q3( -2.00 µC) is fixed at point P. What is the electrostatic...
Q1 is a -50 µC charge is located at the origin. Q2 is a +20 µC...
Q1 is a -50 µC charge is located at the origin. Q2 is a +20 µC charge is located on the y axis at y = 4 m. Consider a point P located on the x axis at x = 2 m.What is the magnitude of electric field due to Q1 at the point P?What are the x and y components of the electric field due to Q1 at the point P? Be sure to include direction.What is the magnitude...
Three particles, charge q1 = +12 µC, q2 = -19 µC, and q3 = +31 µC,...
Three particles, charge q1 = +12 µC, q2 = -19 µC, and q3 = +31 µC, are positioned at the vertices of an isosceles triangle as shown in the figure. If a = 10 cm and b = 5.7 cm, how much work must an external agent do to exchange the positions of (a)  q1 and q3 and, instead, (b)  q1 and q2?
Consider two charged particles that lay on the x-axis. Particle 1 (with charge +q) sits at...
Consider two charged particles that lay on the x-axis. Particle 1 (with charge +q) sits at location (d, 0, 0). Particle 2 (with charge -2q) sits at location (-d, 0, 0). Find the electric field as a function of the angle (θ) measured from the x-axis for all points in the x-y plane that are a distance (2d) away from the origin. (i.e. all the points on the circle with radius 2d).
A positive point charge Q1=2.8×10−5C is fixed at the origin of coordinates, and a negative point...
A positive point charge Q1=2.8×10−5C is fixed at the origin of coordinates, and a negative point charge Q2=−4.1×10−6C is fixed to the x axis at x=+2.0m. Find the location of the place(s) along the xx axis where the electric field due to these two charges is zero.
In the figure particle 1 of charge q1 = 0.93 μC and particle 2 of charge...
In the figure particle 1 of charge q1 = 0.93 μC and particle 2 of charge q2 = -2.96 μC, are held at separation L = 9.5 cm on an x axis. If particle 3 of unknown charge q3 is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the (a)x and (b)y coordinates of particle 3?
Particle 1 of charge q1 = 0.96 μC and particle 2 of charge q2 = -3.02...
Particle 1 of charge q1 = 0.96 μC and particle 2 of charge q2 = -3.02 μC, are held at separation L = 10.6 cm on an x axis. If particle 3 of unknown charge q3 is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the x coordinate of particle 3?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT