Question

In: Math

Suppose f(x) is a very well behaved function in that it is continuous and differential everywhere,...

Suppose f(x) is a very well behaved function in that it is continuous and differential everywhere, and that f(2) = 6 and f(6) = 34.

a. Find the slope of the line between these two points on the graph.

b. What does the Mean Value Theorem tell you about f(x) in the interval between x = 2, and x = 6?

Solutions

Expert Solution

(a)

Two points on the line are and

---------------------------------------------------------------

(b)

f(x) is a very well behaved function in that it is continuous and differential everywhere.

Therefore

satisfies Mean value theorem in the interval between and

By Mean value theorem,

There is a number such that and

------------------------------------------------------


Related Solutions

For the following exercises, determine whether or not the given function f is continuous everywhere...f(x) = log2 (x)
For the following exercises, determine whether or not the given function f is continuous everywhere. If it is continuous everywhere it is defined, state for what range it is continuous. If it is discontinuous, state where it is discontinuous.f(x) = log2 (x)
1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c)...
1) Let f(x) be a continuous, everywhere differentiable function and g(x) be its derivative. If f(c) = n and g(c) = d, write the equation of the tangent line at x = c using only the variables y, x, c, n, and d. You may use point-slope or slope-intercept but do not introduce more variables. 2) Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? 3) Let f(x) be a continuous, everywhere differentiable...
For the following exercises, determine whether or not the given function f is continuous everywhere...f(x) = tan(x) + 2
For the following exercises, determine whether or not the given function f is continuous everywhere. If it is continuous everywhere it is defined, state for what range it is continuous. If it is discontinuous, state where it is discontinuous.f(x) = tan(x) + 2
For the following exercises, determine whether or not the given function f is continuous everywhere....f(x) = 2x + 5/x
For the following exercises, determine whether or not the given function f is continuous everywhere. If it is continuous everywhere it is defined, state for what range it is continuous. If it is discontinuous, state where it is discontinuous.f(x) = 2x + 5/x
For the following exercises, determine whether or not the given function f is continuous everywhere....f(x) = sec(x) − 3.
For the following exercises, determine whether or not the given function f is continuous everywhere. If it is continuous everywhere it is defined, state for what range it is continuous. If it is discontinuous, state where it is discontinuous.f(x) = sec(x) − 3.
Suppose f is a twice differentiable function such that f′(x)>0 and f′′(x)<0 everywhere, and consider the...
Suppose f is a twice differentiable function such that f′(x)>0 and f′′(x)<0 everywhere, and consider the following data table. x      0       1       2 f(x)   3       A       B For each part below, determine whether the given values of A and B are possible (i.e., consistent with the information about f′and f′′ given above) or impossible, and explain your answer. a)A= 5, B= 6 (b)A= 5, B= 8 (c)A= 6, B= 6 (d)A= 6, B= 6.1 (e)A= 6, B= 9
Part A. If a function f has a derivative at x not. then f is continuous...
Part A. If a function f has a derivative at x not. then f is continuous at x not. (How do you get the converse?) Part B. 1) There exist an arbitrary x for all y (x+y=0). Is false but why? 2) For all x there exists a unique y (y=x^2) Is true but why? 3) For all x there exist a unique y (y^2=x) Is true but why?
1) Show the absolute value function f(x) = |x| is continuous at every point. 2) Suppose...
1) Show the absolute value function f(x) = |x| is continuous at every point. 2) Suppose A and B are sets then define the cartesian product A * B Please answer both the questions.
a) State the definition that a function f(x) is continuous at x = a. b) Let...
a) State the definition that a function f(x) is continuous at x = a. b) Let f(x) = ax^2 + b if 0 < x ≤ 2 18/x+1 if x > 2 If f(1) = 3, determine the values of a and b for which f(x) is continuous for all x > 0.
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x)....
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x). Explain the following issues using diagram (Graphs) a) Relationship between f(x) and F(x) for a continuous variable, b) explaining how a uniform random variable can be used to simulate X via the cumulative distribution function of X, or c) explaining the effect of transformation on a discrete and/or continuous random variable
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT