In: Statistics and Probability
1616%
adults favor the use of unmanned drones by police agencies. Twelve U.S. adults are randomly selected. Find the probability that the number of U.S. adults who favor the use of unmanned drones by police agencies is (a) exactly three, (b) at least four, (c) less than eight.
n = 12
p = 0.16
Binomial Probabilities Table | ||
X | Formula | P(X) |
0 | 12!/(0!* 12!) * 0.16^0 * 0.84^12 | 0.1234 |
1 | 12!/(1!* 11!) * 0.16^1 * 0.84^11 | 0.2821 |
2 | 12!/(2!* 10!) * 0.16^2 * 0.84^10 | 0.2955 |
3 | 12!/(3!* 9!) * 0.16^3 * 0.84^9 | 0.1876 |
4 | 12!/(4!* 8!) * 0.16^4 * 0.84^8 | 0.0804 |
5 | 12!/(5!* 7!) * 0.16^5 * 0.84^7 | 0.0245 |
6 | 12!/(6!* 6!) * 0.16^6 * 0.84^6 | 0.0054 |
7 | 12!/(7!* 5!) * 0.16^7 * 0.84^5 | 0.0009 |
8 | 12!/(8!* 4!) * 0.16^8 * 0.84^4 | 0.0001 |
9 | 12!/(9!* 3!) * 0.16^9 * 0.84^3 | 0.0000 |
10 | 12!/(10!* 2!) * 0.16^10 * 0.84^2 | 0.0000 |
11 | 12!/(11!* 1!) * 0.16^11 * 0.84^1 | 0.0000 |
12 | 12!/(12!* 0!) * 0.16^12 * 0.84^0 | 0.0000 |
a) Probability of exactly 3, P(X = 3) = 0.1876
b) Probability of at least 4, P(X ≥ 4) = 1 - P(X ≤ 3)
= 1 - [ P(0)+P(1)+P(2)+P(3) ]
= 1 - [ 0.1234 + 0.2821 + 0.2955 + 0.1876 ]
= 0.1114
c) Probability of less than 8, P(X < 8) =
= P(0)+P(1)+P(2)+P(3)+P(4)+P(5)+P(6) +P(7)
= 0.9999