In: Finance
WRITE OBJECTIVE FUNCTION AND CONSTRAINTS.
A soft drink manufacturing company has 3 factories—one in Orlando, one in Tampa, and one in Port St. Lucie—which supply soft drink bottles to 3 warehouses located in the city of Miami. The associated per-unit transportation cost table is provided below.
Transportation Costs ($) |
|||
Factories/Warehouse (W) |
W1 |
W2 |
W3 |
Orlando |
4 |
3 |
7 |
Tampa |
7 |
6 |
4 |
Port St. Lucie |
3 |
6 |
6 |
The factory in Orlando has a capacity of 15,000 units.
The factory in Tampa has a capacity of 18,000 units.
The factory in Port St. Lucie has a capacity of 8,000 units.
The requirements of the warehouses are:
Warehouse |
Requirement (Bottles) |
W1 |
18,000 |
W2 |
12,000 |
W3 |
5,000 |
WRITE OBJECTIVE FUNCTION AND CONSTRAINTS.WRITE OBJECTIVE FUNCTION AND CONSTRAINTS.WRITE OBJECTIVE FUNCTION AND CONSTRAINTS.WRITE OBJECTIVE FUNCTION AND CONSTRAINTS.
Factories/Warehouse(W) | W1 | W2 | W3 | |||||||
Orlando | x11 | x12 | x13 | |||||||
Tampa | x21 | x22 | x23 | |||||||
Port St. Lucie | x31 | x32 | x33 | |||||||
Let x11 be the number of units to be transported from Orlando to W1, x12 be the transportation from Orlando to W2 and so on. | ||||||||||
Similarly x21 be the transporataion from Tampa to W1 and so on. | ||||||||||
and | ||||||||||
Similarly x31 be the transporataion from Port St. Lucie to W1 and so on. | ||||||||||
Objective is to minimize transportation cost. | ||||||||||
Minimize transportation cost | = | 4x11+3x12+7x13+7x21+6x22+4x23+3x31+6x32+6x33 | ||||||||
Constraints: | ||||||||||
Condition 1:Limiation of factory | ||||||||||
x11+x12+x13 < 15000 | ||||||||||
x21+x22+x23 < 18000 | ||||||||||
x31+x32+x33 < 8000 | ||||||||||
Condition 2:Limiatation of warehouse: | ||||||||||
x11+x21+x31 < 18000 | ||||||||||
x12+x22+x32 < 12000 | ||||||||||
x13+x23+x33 < 5000 | ||||||||||
Thus, | ||||||||||
Objective, | ||||||||||
Minimize (Z) | = | 4x11+3x12+7x13+7x21+6x22+4x23+3x31+6x32+6x33 | ||||||||
Subject to constrtaints, | ||||||||||
x11+x12+x13 < 15000 | ||||||||||
x21+x22+x23 < 18000 | ||||||||||
x31+x32+x33 < 8000 | ||||||||||
x11+x21+x31 < 18000 | ||||||||||
x12+x22+x32 < 12000 | ||||||||||
x13+x23+x33 < 5000 | ||||||||||
X11, x12 to x33 > 0 | ||||||||||