Question

In: Statistics and Probability

Does a continuous random variable X exist with E(X − a) = 0, where a is...

Does a continuous random variable X exist with E(X − a) = 0, where a is the
day of your birthdate? If yes, give an example for its probability density function.
If no, give an explanation.
(b) Does a continuous random variable Y exist with E
(Y − b)
2

= 0, where b is
the month of your birthdate? If yes, give an example for its probability density
function. If no, give an explanation.

Solutions

Expert Solution


  • a is a day of a birthday. Or, in other words, any number belonging to R+.
    This can exist.

    An example to site this is:


    It is known that, in such a case,




  • This event cannot happen.
    This is because,

    a is a month of a birthday. Or, in other words, any number belonging to R+.


    Now,
    Also,


    Then, integral over such a non-negetive random variable can never be 0, unless,
    Again, this will happen, only if,


    However, for a continuos random variable, there does not exist any positive probability to any fixed point.

    Hence, the condition cannot be true for any continuos random variable.

I hope this clarifies your doubt. If you're satisfied with the solution, hit the Like button. For further clarification, comment below. Thank You. :)


Related Solutions

If X is a random variable with CDF F(x) = e-e(µ-x)/β, where β > 0 and...
If X is a random variable with CDF F(x) = e-e(µ-x)/β, where β > 0 and -∞ < µ, x < ∞; calculate the median of X. Also, obtain the PDF of X.
Let X be a continuous random variable such that E[Xm] exists where m is some positive...
Let X be a continuous random variable such that E[Xm] exists where m is some positive integer. Prove that if k is a positive integer and k < m, then E[Xk] exists.
Let X be a random variable with CDF F(x) = e-e(µ-x)/β, where β > 0 and...
Let X be a random variable with CDF F(x) = e-e(µ-x)/β, where β > 0 and -∞ < µ, x < ∞. 1. What is the median of X? 2. Obtain the PDF of X. Use R to plot, in the range -10<x<30, the pdf for µ = 2, β = 5. 3. Draw a random sample of size 1000 from f(x) for µ = 2, β = 5 and draw a histogram of the values in the random sample...
Suppose that random variable X 0 = (X1, X2) is such that E[X 0 ] =...
Suppose that random variable X 0 = (X1, X2) is such that E[X 0 ] = (µ1, µ2) and var[X] = σ11 σ12 σ12 σ22 . (a matrix) (i) Let Y = a + bX1 + cX2. Obtain an expression for the mean and variance of Y . (ii) Let Y = a + BX where a' = (a1, a2) B = b11 b12 0 b22 (a matrix). Obtain an expression for the mean and variance of Y . (ii)...
The random variable X has a continuous distribution with density f, where f(x) ={x/2−5i f10≤x≤12 ,0...
The random variable X has a continuous distribution with density f, where f(x) ={x/2−5i f10≤x≤12 ,0 otherwise. (a) Determine the cumulative distribution function of X.(1p) (b) Calculate the mean of X.(1p) (c) Calculate the mode of X(point where density attains its maximum) (d) Calculate the median of X, i.e. a number m such that P(X≤m) = 1/2 (e) Calculate the mean of the random variable Y= 12−X (f) Calculate P(X^2<121)
(15 pts) Suppose that the continuous random variable X has pdf ?(?) = { ?; 0...
(15 pts) Suppose that the continuous random variable X has pdf ?(?) = { ?; 0 < ? < 2 2?; 5 < ? < 10 0; otherwise a) Determine the value of c that makes this a legitimate pdf. b) Sketch a graph of this pdf. c) Determine the cumulative distribution function (cdf) of X. d) Sketch a graph of this cdf. e) Calculate ? = ?(?) and ? = ??(?). f) What is ?(? = ?)? g) Compute...
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤...
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤ x ≤ 2 (a) What should a be in order for this to be a legitimate p.d.f? (b) What is the distribution function (c.d.f.) for X? (c) What is Pr(0 ≤ X < 1)? Pr(X > 0.5)? Pr(X > 3)? (d) What is the 90th percentile value of this distribution? (Note: If you do this problem correctly, you will end up with a cubic...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 <...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 < x < 1, 0 elsewhere. (a) Find the value of c such that fX(x) is indeed a PDF. (b) Find P(−0.5 < X < 0.3). (c) Find the median of X.
Considering X a continuous random variable defined by the distribution function f(x) = 0 if x<1...
Considering X a continuous random variable defined by the distribution function f(x) = 0 if x<1 -k +k/x if 1<= x < 2 1 if 2<x Find k.
Let X be a continuous random variable that has a uniform distribution between 0 and 2...
Let X be a continuous random variable that has a uniform distribution between 0 and 2 and let the cumulative distribution function F(x) = 0.5x if x is between 0 and 2 and let F(x) = 0 if x is not between 0 and 2. Compute 1. the probability that X is between 1.4 and 1.8 2. the probability that X is less than 1.2 3. the probability that X is more than 0.8 4. the expected value of X...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT