Question

In: Statistics and Probability

The random variable X has a continuous distribution with density f, where f(x) ={x/2−5i f10≤x≤12 ,0...

The random variable X has a continuous distribution with density f, where f(x) ={x/2−5i f10≤x≤12 ,0 otherwise.

(a) Determine the cumulative distribution function of X.(1p)

(b) Calculate the mean of X.(1p)

(c) Calculate the mode of X(point where density attains its maximum)

(d) Calculate the median of X, i.e. a number m such that P(X≤m) = 1/2

(e) Calculate the mean of the random variable Y= 12−X

(f) Calculate P(X^2<121)

Solutions

Expert Solution


Related Solutions

A continuous random variable X, has the density function f(x) =((6/5)(x^2)) , 0 ≤ x ≤...
A continuous random variable X, has the density function f(x) =((6/5)(x^2)) , 0 ≤ x ≤ 1; (6/5) (2 − x), 1 ≤ x ≤ 2; 0, elsewhere. (a) Verify f(x) is a valid density function. (b) Find P(X > 3 2 ), P(−1 ≤ X ≤ 1). (c) Compute the cumulative distribution function F(x) of X. (d) Compute E(3X − 1), E(X2 + 1) and σX.
Let X be a continuous random variable that has a uniform distribution between 0 and 2...
Let X be a continuous random variable that has a uniform distribution between 0 and 2 and let the cumulative distribution function F(x) = 0.5x if x is between 0 and 2 and let F(x) = 0 if x is not between 0 and 2. Compute 1. the probability that X is between 1.4 and 1.8 2. the probability that X is less than 1.2 3. the probability that X is more than 0.8 4. the expected value of X...
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x)....
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x). Explain the following issues using diagram (Graphs) a) Relationship between f(x) and F(x) for a continuous variable, b) explaining how a uniform random variable can be used to simulate X via the cumulative distribution function of X, or c) explaining the effect of transformation on a discrete and/or continuous random variable
Considering X a continuous random variable defined by the distribution function f(x) = 0 if x<1...
Considering X a continuous random variable defined by the distribution function f(x) = 0 if x<1 -k +k/x if 1<= x < 2 1 if 2<x Find k.
2 Consider the probability density function (p.d.f) of a continuous random variable X: f(x) = (...
2 Consider the probability density function (p.d.f) of a continuous random variable X: f(x) = ( k x3 , 0 < x < 1, 0, elsewhere, where k is a constant. (a) Find k. (b) Compute the cumulative distribution function F(x) of X. (c) Evaluate P(0.1 < X < 0.8). (d) Compute µX = E(X) and σX.
A continuous probability density function (PDF) f ( X ) describes the distribution of continuous random...
A continuous probability density function (PDF) f ( X ) describes the distribution of continuous random variable X . Explain in words, and words only, this property: P ( x a < X < x b ) = P ( x a ≤ X ≤ x b )
Assume that a continuous random variable has a following probability density function: f ( x )...
Assume that a continuous random variable has a following probability density function: f ( x ) = { 1 10 x 4 2 ≤ x ≤ 2.414 0 o t h e r w i s e Use this information and answer questions 3a to 3g. Question a: Which of the following is a valid cumulative density function for the defined region ( 2 ≤ x ≤ 2.414)?    A.F x ( x ) = 1 50 x 5 −...
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = x/C , 3 ≤ x ≤ 7, zero elsewhere. Consider Y = g( X ) = 100/(x^2+1). Use cdf approach to find the cdf of Y, FY(y). Hint: F Y ( y ) = P( Y <y ) = P( g( X ) <y ) =
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤...
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤ x ≤ 2 (a) What should a be in order for this to be a legitimate p.d.f? (b) What is the distribution function (c.d.f.) for X? (c) What is Pr(0 ≤ X < 1)? Pr(X > 0.5)? Pr(X > 3)? (d) What is the 90th percentile value of this distribution? (Note: If you do this problem correctly, you will end up with a cubic...
Say we have a continuous random variable X with density f(x) = c (1+x3) (where c...
Say we have a continuous random variable X with density f(x) = c (1+x3) (where c is a constant) with support Sx = [0,3] a. What value of c will make f(x) a valid probability density function? b. What is the probability that X=2? What is the probability that X is greater than 2? Now say we have an infinite sequence of independent random variables Xi (that is to say X1, X2, X3, ....)  with density f(x) stated earlier. c. What...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT