Question

In: Physics

A wheel 2.25 m in diameter lies in a vertical plane and rotates about its central...

A wheel 2.25 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.30 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3

Solutions

Expert Solution

Let r = 2.25 m; alpha = 4.30 rad/sec^2, omega0 = 57.3 deg = 1 rad at time t0 = 0.

a) Presuming w0 = 0 rad/sec, the initial angular velocity at t0 = 0, then w1 = alpha(dt) = 4.3*2 = 8.6 rad/sec when dt = t1 - t0 = 2 sec.

b) At t1 = 2 sec, w1 = 8.6 rad/sec so that v1 = w1*r = 8.6*2.25 =19.35 the tangential velocity.

c) Total acceleration A^2 = ar^2 + at^2; where ar is the radial acceleration ar = v1^2/r and at is the tangentail acceleration = alpha*r = 4.3*2.25 =9.675. Thus, A = sqrt((v1^2/r)^2 + (alpha*r)^2) = ? and everything on the RHS is known, you can do the math

d) d(omega) = omega1 - omega0 which is the angular amount the wheel moves in dt = 2 seconds starting at omega0; so that omega1 = d(omega) + omega0; where omega0 = 1 rad wrt the horizontal at t0 = 0 and d(omega) = 1/2 alpha(dt)^2 = (1/2)*4.3*2^25 = 8.6 rad which is how much the wheel rotates in dt = 2 sec. Therefore, omega1 = 8.6 rad + 1 rad = 9.6 rad, wrt the horizontal.


Related Solutions

A wheel 1.70 m in diameter lies in a vertical plane and rotates with a constant...
A wheel 1.70 m in diameter lies in a vertical plane and rotates with a constant angular acceleration of 4.10 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3° with the horizontal at this time. At t = 2.00 s find the following. (a) the angular speed of the wheel=______ rad/s (b) the tangential speed and the total acceleration of the point...
A vertical wheel with a diameter of 39 cm starts from rest and rotates with a...
A vertical wheel with a diameter of 39 cm starts from rest and rotates with a constant angular acceleration of 7.2 rad/s2 around a fixed axis through its center counterclockwise. a) Through what angle (in degrees) has the point initially at the bottom of the wheel traveled when t = 14 s? (Indicate the direction with the sign of your answer.) b) What is the point's total linear acceleration at this instant? (Enter the magnitude in m/s2.
A plane mirror rotates about a vertical axis in its plane at 35 revs s^-1 and...
A plane mirror rotates about a vertical axis in its plane at 35 revs s^-1 and reflects a narrow beam of light to a stationary mirror 200 m away. This mirror reflects the light normally so that it is again reflected from the rotating mirror. The light now makes an angle of 2.0 minutes with the path it would travel if both mirrors were stationary. Calculate the velocity of light. Please can you explain the solution to this question step...
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical...
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical axis with an angular speed of 1230 rpm . The only magnetic field in this system is that of the Earth. At the location of the coil, the horizontal component of the magnetic field is 3.81×10−5T, and the vertical component is 2.85×10−5T. Find the maximum emf induced in the coil. Answer in mV
A stationary bicycle wheel of radius 0.8 m is mounted in the vertical plane (see figure below)
A stationary bicycle wheel of radius 0.8 m is mounted in the vertical plane (see figure below). The axle is held up by supports that are not shown, and the wheel is free to rotate on the nearly frictionless axle. The wheel has mass 4.2 kg, all concentrated in the rim (the spokes have negligible mass). A lump of clay with mass 0.5 kg falls and sticks to the outer edge of the wheel at the location shown. Just before...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on frictionless bearing. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h from rest?...
A mechanical aim rotates in the vertical plan about point O. The slider P (m =...
A mechanical aim rotates in the vertical plan about point O. The slider P (m = 2 kg) is drawn toward O with a constant speed (?̇) of 0.5 m/s through the rough slot (friction coefficient µ = 0.1) by pulling on the free end E of the cord. At the instant when r = 0.25 m, the arm is rotating with a constant speed (?̇) of 10 rad/s in the clockwise direction. When the slider is oriented at an...
A cylinder with rotational inertia I1 = 2.6 kg · m^2 rotates clockwise about a vertical...
A cylinder with rotational inertia I1 = 2.6 kg · m^2 rotates clockwise about a vertical axis through its center with angular speed ω1 = 5.8 rad/s. A second cylinder with rotational inertia I2 = 1.3 kg · m2 rotates counterclockwise about the same axis with angular speed ω2 = 6.6 rad/s. If the cylinders couple so they have the same rotational axis, what is the angular speed of the combination (in rad/s)? What percentage of the original kinetic energy...
A torque of 36.2 N · m is applied to an initially motionless wheel which rotates...
A torque of 36.2 N · m is applied to an initially motionless wheel which rotates around a fixed axis. This torque is the result of a directed force combined with a friction force. As a result of the applied torque the angular speed of the wheel increases from 0 to 10.1 rad/s. After 6.20 s the directed force is removed, and the wheel comes to rest 59.4 s later. From the time the directed force is initially applied, how...
A torque of 36.2 N · m is applied to an initially motionless wheel which rotates...
A torque of 36.2 N · m is applied to an initially motionless wheel which rotates around a fixed axis. This torque is the result of a directed force combined with a friction force. As a result of the applied torque the angular speed of the wheel increases from 0 to 9.5 rad/s. After 6.10 s the directed force is removed, and the wheel comes to rest 60.2 s later. A- What is the wheel's moment of inertia B- What...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT