In: Finance
Two stocks each currently pay a dividend of $2.20 per share. It is anticipated that both firms’ dividends will grow annually at the rate of 2 percent. Firm A has a beta coefficient of 0.95 while the beta coefficient of firm B is 0.72.
If U.S. Treasury bills currently yield 3.4 percent and you expect the market to increase at an annual rate of 8 percent, what are the valuations of these two stocks using the dividend-growth model? Do not round intermediate calculations. Round your answers to two decimal places.
Stock A:
Stock B:
Current Value | ||||||||||||
Stock A | $ 38.89 | |||||||||||
Stock B | $ 47.64 | |||||||||||
Working: | ||||||||||||
As per dividend growth model, current value of stock is the present value of future dividends. | ||||||||||||
Step-1:Calculation of expected rate of return | ||||||||||||
As per Capital Asset pricing model(CAPM), | ||||||||||||
Expected rate of return | = | Rf+Beta*(Rm-Rf) | Where, | |||||||||
Rf | Risk free rate | |||||||||||
So, as per CAPM, expected rate of return of, | Rm | Market return | ||||||||||
Stock A | = | 3.40% | + | 0.95 | * | (8%-3.4%) | = | 7.77% | ||||
Stock B | = | 3.40% | + | 0.72 | * | (8%-3.4%) | = | 6.71% | ||||
Step-2:Calculation of current value of stocks | ||||||||||||
As per dividend valuation method, | ||||||||||||
current value of stock | = | D0*(1+g)/(Ke-g) | Where, | |||||||||
D0 | Current dividend | |||||||||||
So, current value of: | g | Growth rate in dividends | ||||||||||
Ke | Expected rate of return | |||||||||||
Stock A | = | 2.20*(1+0.02)/(0.0777-0.02) | Where, | |||||||||
= | $ 38.89 | D0 | $ 2.20 | |||||||||
g | 2% | |||||||||||
Ke | 7.77% | |||||||||||
Stock B | = | 2.20*(1+0.02)/(0.0671-0.02) | Where, | |||||||||
= | $ 47.64 | D0 | $ 2.20 | |||||||||
g | 2% | |||||||||||
Ke | 6.71% | |||||||||||