In: Statistics and Probability
Age | Gender | Children | Household Income ($) | Total non RE Investments | Financial transactions | Potential RE investment? | Electric car |
38 | Female | Yes | 75200 | 12200 | 4 | No | No |
30 | Male | Yes | 70300 | 12400 | 4 | No | No |
41 | Female | No | 48200 | 26800 | 5 | No | No |
28 | Female | No | 95300 | 19600 | 6 | Yes | No |
31 | Female | Yes | 73300 | 15100 | 5 | Yes | No |
32 | Male | Yes | 123400 | 39700 | 3 | No | No |
32 | Male | Yes | 73900 | 21900 | 2 | Yes | No |
26 | Female | Yes | 54300 | 41900 | 2 | Yes | No |
26 | Male | No | 93100 | 16100 | 4 | Yes | No |
34 | Female | No | 60100 | 18400 | 11 | Yes | No |
33 | Female | No | 48600 | 33800 | 3 | No | No |
35 | Female | No | 43500 | 15500 | 6 | Yes | No |
28 | Female | Yes | 73600 | 17300 | 7 | No | No |
30 | Male | Yes | 68200 | 47900 | 5 | No | No |
30 | Female | Yes | 61900 | 28200 | 3 | No | No |
30 | Male | No | 57600 | 19400 | 6 | Yes | No |
33 | Male | No | 82300 | 31000 | 12 | Yes | No |
28 | Male | Yes | 64600 | 21300 | 6 | No | No |
27 | Female | Yes | 61100 | 21300 | 10 | No | No |
23 | Female | Yes | 31200 | 21300 | 7 | No | No |
30 | Female | No | 92600 | 34100 | 6 | No | No |
28 | Male | No | 68300 | 32600 | 7 | No | No |
41 | Male | No | 35100 | 0 | 10 | Yes | No |
29 | Male | No | 85700 | 20800 | 10 | Yes | No |
33 | Female | Yes | 140300 | 23100 | 6 | Yes | No |
30 | Male | Yes | 108200 | 39800 | 9 | No | No |
29 | Female | No | 61100 | 17900 | 2 | No | No |
33 | Male | Yes | 33900 | 33300 | 2 | No | No |
30 | Female | Yes | 54400 | 21800 | 8 | Yes | No |
30 | Male | No | 61200 | 54000 | 7 | No | No |
36 | Female | Yes | 58000 | 34800 | 12 | Yes | No |
33 | Female | Yes | 90700 | 36100 | 7 | Yes | Yes |
28 | Female | No | 95200 | 44300 | 5 | Yes | Yes |
28 | Male | Yes | 50500 | 21400 | 5 | No | No |
28 | Male | Yes | 33800 | 8600 | 6 | Yes | Yes |
35 | Male | No | 147400 | 23200 | 3 | No | No |
31 | Male | Yes | 92600 | 24800 | 4 | No | No |
33 | Female | No | 66200 | 26600 | 5 | No | Yes |
32 | Male | No | 45700 | 33100 | 8 | No | No |
28 | Male | Yes | 60500 | 27000 | 4 | No | No |
27 | Male | No | 110600 | 48700 | 6 | No | No |
30 | Female | Yes | 60300 | 17100 | 4 | Yes | No |
29 | Male | No | 75700 | 19900 | 6 | No | No |
28 | Male | Yes | 70100 | 13200 | 9 | No | No |
29 | Female | Yes | 42100 | 32400 | 6 | Yes | No |
32 | Female | Yes | 41700 | 14200 | 5 | No | Yes |
33 | Male | No | 96900 | 20100 | 5 | No | No |
23 | Male | No | 65700 | 32000 | 5 | Yes | Yes |
29 | Female | No | 50200 | 41900 | 3 | No | No |
31 | Male | No | 61700 | 12000 | 3 | No | No |
33 | Female | Yes | 44500 | 14000 | 6 | No | No |
37 | Female | No | 51900 | 10000 | 4 | No | Yes |
28 | Female | Yes | 119100 | 27200 | 5 | No | Yes |
27 | Female | No | 49200 | 34500 | 4 | Yes | Yes |
33 | Female | Yes | 39000 | 26000 | 6 | No | Yes |
31 | Female | No | 35000 | 53400 | 3 | No | Yes |
30 | Male | Yes | 104700 | 23100 | 7 | No | Yes |
23 | Male | No | 49300 | 24900 | 5 | No | No |
33 | Male | No | 74000 | 10900 | 10 | No | Yes |
31 | Female | Yes | 57100 | 52500 | 2 | No | Yes |
24 | Female | Yes | 51400 | 24600 | 16 | No | Yes |
35 | Female | Yes | 62100 | 28800 | 6 | No | No |
36 | Female | Yes | 103000 | 37300 | 11 | Yes | Yes |
24 | Male | No | 97900 | 21100 | 9 | Yes | Yes |
25 | Male | No | 123100 | 40900 | 3 | No | No |
26 | Female | No | 322500 | 24700 | 7 | No | Yes |
31 | Male | Yes | 54800 | 33600 | 8 | No | Yes |
26 | Male | Yes | 66500 | 20000 | 6 | Yes | No |
26 | Male | Yes | 33700 | 23900 | 2 | No | No |
28 | Male | Yes | 73600 | 11700 | 8 | Yes | No |
26 | Female | Yes | 71300 | 19200 | 5 | No | Yes |
34 | Male | No | 74200 | 11900 | 6 | No | No |
32 | Male | Yes | 70000 | 17700 | 8 | No | Yes |
30 | Male | No | 40800 | 23900 | 6 | No | Yes |
29 | Female | Yes | 72500 | 27500 | 4 | Yes | Yes |
23 | Male | No | 53300 | 25300 | 4 | Yes | No |
28 | Female | No | 45600 | 66900 | 5 | No | No |
25 | Male | Yes | 73900 | 18800 | 5 | No | Yes |
35 | Male | No | 83600 | 24400 | 3 | No | Yes |
31 | Male | No | 124700 | 45500 | 9 | No | Yes |
35 | Male | No | 101600 | 54700 | 3 | Yes | Yes |
32 | Female | Yes | 205900 | 32200 | 4 | No | No |
29 | Male | No | 69700 | 16200 | 3 | No | Yes |
34 | Female | No | 95700 | 16000 | 9 | No | No |
30 | Female | Yes | 46100 | 24000 | 3 | Yes | No |
29 | Male | No | 118600 | 28800 | 3 | No | Yes |
42 | Male | No | 65400 | 14100 | 5 | No | Yes |
37 | Female | Yes | 149300 | 17700 | 11 | Yes | Yes |
32 | Male | No | 125000 | 29800 | 7 | No | Yes |
33 | Female | No | 39800 | 27200 | 3 | Yes | Yes |
36 | Male | Yes | 83500 | 43000 | 2 | Yes | No |
32 | Female | Yes | 38700 | 15500 | 7 | Yes | Yes |
35 | Male | No | 102400 | 8700 | 6 | Yes | No |
20 | Male | No | 57700 | 13900 | 14 | No | Yes |
30 | Male | No | 16200 | 14200 | 6 | No | Yes |
31 | Female | No | 43100 | 27100 | 3 | Yes | No |
28 | Male | No | 43700 | 22300 | 3 | Yes | No |
24 | Female | Yes | 39600 | 29500 | 4 | Yes | Yes |
30 | Male | No | 127500 | 18800 | 2 | No | Yes |
23 | Female | No | 33500 | 26400 | 9 | Yes | Yes |
29 | Male | Yes | 48100 | 16400 | 5 | Yes | Yes |
33 | Male | No | 52800 | 39500 | 3 | No | Yes |
24 | Male | No | 54800 | 20900 | 6 | Yes | Yes |
25 | Female | No | 46500 | 52800 | 5 | No | Yes |
38 | Male | No | 60400 | 36500 | 4 | No | Yes |
22 | Female | Yes | 202400 | 30400 | 11 | No | Yes |
32 | Female | No | 71300 | 39800 | 7 | No | No |
28 | Female | No | 62800 | 18100 | 9 | Yes | No |
32 | Male | Yes | 43900 | 69500 | 7 | Yes | No |
33 | Female | Yes | 52200 | 33000 | 5 | No | Yes |
32 | Female | Yes | 64400 | 32100 | 3 | Yes | No |
24 | Male | Yes | 77400 | 15200 | 8 | Yes | No |
23 | Female | No | 65900 | 49800 | 3 | Yes | Yes |
23 | Male | Yes | 54100 | 28100 | 6 | No | No |
38 | Male | Yes | 77400 | 15200 | 6 | No | Yes |
29 | Male | Yes | 85900 | 30800 | 3 | No | Yes |
28 | Male | No | 148600 | 21200 | 3 | No | No |
29 | Male | No | 82100 | 24600 | 4 | No | Yes |
36 | Male | Yes | 64400 | 24700 | 9 | Yes | Yes |
35 | Female | No | 86200 | 26300 | 16 | Yes | No |
34 | Female | Yes | 177100 | 32200 | 6 | Yes | No |
23 | Male | No | 68300 | 20300 | 6 | No | Yes |
31 | Female | Yes | 67900 | 60900 | 6 | No | Yes |
28 | Male | Yes | 57300 | 15800 | 11 | No | Yes |
33 | Female | No | 83600 | 31700 | 6 | No | Yes |
31 | Male | No | 77500 | 0 | 5 | Yes | Yes |
26 | Female | Yes | 61700 | 20900 | 9 | Yes | Yes |
38 | Female | Yes | 85600 | 37900 | 12 | No | No |
28 | Male | Yes | 59900 | 22400 | 7 | Yes | Yes |
27 | Male | No | 43100 | 26600 | 5 | No | Yes |
31 | Male | No | 65700 | 20800 | 10 | Yes | No |
34 | Male | Yes | 80500 | 31100 | 7 | No | Yes |
29 | Male | Yes | 88400 | 31200 | 5 | No | Yes |
27 | Male | No | 40200 | 0 | 2 | No | No |
26 | Male | Yes | 84000 | 38900 | 7 | Yes | Yes |
33 | Male | Yes | 34400 | 29500 | 4 | Yes | Yes |
33 | Male | Yes | 55800 | 16100 | 5 | No | No |
34 | Male | Yes | 64900 | 15800 | 7 | No | Yes |
31 | Male | Yes | 41100 | 27500 | 4 | No | Yes |
37 | Female | Yes | 39100 | 13000 | 7 | No | No |
27 | Male | No | 58200 | 68100 | 5 | Yes | No |
32 | Male | Yes | 46500 | 18500 | 7 | Yes | Yes |
25 | Female | Yes | 45100 | 27100 | 2 | No | Yes |
31 | Female | Yes | 69900 | 25900 | 5 | No | Yes |
38 | Male | No | 63700 | 18400 | 2 | No | No |
31 | Female | No | 40500 | 59200 | 4 | No | Yes |
28 | Female | Yes | 62600 | 67900 | 5 | No | No |
29 | Female | Yes | 73400 | 36700 | 7 | No | Yes |
34 | Female | No | 35000 | 32400 | 9 | No | Yes |
35 | Female | No | 114000 | 10300 | 4 | Yes | Yes |
30 | Male | No | 70800 | 39300 | 7 | No | Yes |
32 | Female | Yes | 60300 | 13800 | 6 | No | Yes |
31 | Male | No | 78700 | 11100 | 4 | No | Yes |
29 | Female | No | 179700 | 28600 | 2 | No | No |
31 | Male | Yes | 157200 | 22100 | 6 | No | Yes |
31 | Female | No | 67300 | 16700 | 6 | No | Yes |
22 | Female | No | 49800 | 19400 | 6 | Yes | Yes |
19 | Male | Yes | 43400 | 54600 | 4 | Yes | Yes |
31 | Female | Yes | 71100 | 41500 | 2 | Yes | Yes |
22 | Female | Yes | 42100 | 23300 | 9 | No | No |
26 | Male | Yes | 42200 | 29700 | 8 | No | Yes |
34 | Male | No | 63300 | 33200 | 2 | Yes | Yes |
37 | Male | No | 55700 | 56300 | 5 | Yes | No |
36 | Female | No | 107900 | 25900 | 5 | No | Yes |
27 | Female | Yes | 44800 | 63500 | 6 | Yes | Yes |
32 | Male | No | 94700 | 18700 | 7 | Yes | Yes |
27 | Female | No | 112700 | 49700 | 4 | No | Yes |
32 | Male | Yes | 114900 | 15000 | 5 | Yes | Yes |
24 | Female | Yes | 112700 | 8200 | 7 | Yes | No |
38 | Female | No | 60900 | 36300 | 9 | Yes | No |
33 | Female | No | 137800 | 50200 | 7 | No | Yes |
19 | Male | Yes | 47200 | 13500 | 10 | No | Yes |
33 | Male | Yes | 70900 | 37500 | 4 | Yes | Yes |
25 | Female | No | 52000 | 26800 | 7 | No | No |
27 | Male | Yes | 166500 | 30300 | 5 | No | No |
35 | Female | No | 88000 | 46300 | 18 | No | Yes |
29 | Male | No | 41800 | 14400 | 9 | Yes | Yes |
31 | Male | No | 60300 | 0 | 4 | Yes | Yes |
29 | Female | Yes | 53400 | 18800 | 5 | Yes | Yes |
31 | Female | Yes | 46700 | 40900 | 5 | No | Yes |
32 | Male | Yes | 59600 | 23300 | 7 | Yes | No |
22 | Female | Yes | 27700 | 11900 | 4 | No | No |
29 | Male | Yes | 48900 | 28100 | 10 | Yes | Yes |
28 | Female | No | 56600 | 20400 | 8 | No | Yes |
26 | Male | No | 32500 | 14900 | 7 | No | No |
33 | Female | Yes | 74500 | 33900 | 3 | No | No |
35 | Male | No | 69800 | 15100 | 6 | No | No |
27 | Male | Yes | 48100 | 133400 | 5 | No | No |
33 | Female | Yes | 95900 | 18300 | 7 | Yes | Yes |
30 | Female | No | 76500 | 28700 | 10 | Yes | Yes |
28 | Male | No | 43700 | 50900 | 6 | Yes | Yes |
35 | Female | Yes | 72700 | 25600 | 4 | No | Yes |
34 | Female | No | 140100 | 30700 | 0 | Yes | Yes |
28 | Male | No | 76600 | 64300 | 5 | Yes | Yes |
30 | Male | Yes | 65300 | 67200 | 7 | Yes | Yes |
37 | Male | Yes | 161100 | 62200 | 11 | No | Yes |
32 | Male | No | 64900 | 33100 | 12 | No | No |
21 | Male | Yes | 59800 | 26000 | 4 | No | No |
31 | Female | Yes | 87900 | 18400 | 5 | Yes | Yes |
31 | Male | Yes | 174900 | 53000 | 12 | Yes | Yes |
23 | Male | Yes | 40700 | 46300 | 3 | No | No |
34 | Male | Yes | 36700 | 32700 | 5 | Yes | Yes |
31 | Male | No | 167800 | 50900 | 4 | No | Yes |
28 | Female | No | 168500 | 19200 | 2 | No | No |
30 | Male | Yes | 112100 | 18300 | 3 | Yes | No |
25 | Male | No | 65500 | 17800 | 2 | No | No |
32 | Female | No | 73500 | 41800 | 6 | Yes | No |
30 | Male | Yes | 59100 | 7100 | 7 | Yes | No |
28 | Male | No | 73900 | 15500 | 8 | Yes | No |
33 | Male | Yes | 120800 | 22900 | 4 | No | No |
34 | Female | Yes | 25100 | 10000 | 4 | Yes | No |
34 | Female | Yes | 137900 | 53300 | 6 | No | No |
33 | Female | Yes | 70200 | 32400 | 7 | Yes | No |
26 | Male | No | 90900 | 85600 | 2 | No | No |
28 | Female | No | 65500 | 26400 | 6 | Yes | No |
23 | Male | No | 86200 | 30400 | 5 | Yes | No |
31 | Male | No | 45900 | 24000 | 8 | Yes | No |
28 | Female | No | 76000 | 17500 | 0 | No | No |
29 | Male | Yes | 82700 | 11000 | 5 | No | No |
30 | Female | Yes | 57400 | 9400 | 5 | No | No |
30 | Male | No | 53700 | 34700 | 12 | No | No |
31 | Female | Yes | 29900 | 44200 | 3 | Yes | No |
22 | Male | Yes | 94800 | 20700 | 5 | No | No |
34 | Male | Yes | 67300 | 29000 | 3 | No | No |
30 | Female | Yes | 41200 | 29800 | 3 | No | No |
34 | Female | Yes | 70400 | 95200 | 21 | Yes | No |
25 | Male | Yes | 120600 | 21500 | 5 | Yes | No |
32 | Female | No | 63900 | 23100 | 4 | No | No |
31 | Female | Yes | 98800 | 13900 | 5 | Yes | No |
29 | Female | Yes | 53300 | 28900 | 7 | No | No |
28 | Female | Yes | 30000 | 70400 | 8 | No | No |
26 | Female | Yes | 93200 | 12400 | 4 | No | No |
26 | Male | No | 84100 | 27800 | 9 | Yes | No |
26 | Female | Yes | 124000 | 19900 | 5 | No | No |
29 | Female | Yes | 73400 | 28000 | 7 | No | No |
32 | Female | No | 45500 | 75000 | 6 | Yes | No |
37 | Female | Yes | 88400 | 14000 | 9 | No | No |
32 | Male | No | 74900 | 20900 | 4 | No | No |
33 | Female | Yes | 51700 | 47200 | 6 | No | No |
36 | Female | Yes | 78700 | 57200 | 5 | No | No |
30 | Male | Yes | 30700 | 42900 | 7 | Yes | No |
31 | Male | Yes | 56000 | 44200 | 1 | Yes | No |
28 | Female | Yes | 88400 | 28000 | 4 | Yes | No |
25 | Male | Yes | 201700 | 24500 | 6 | Yes | No |
29 | Male | Yes | 71600 | 18100 | 9 | No | No |
31 | Female | Yes | 59000 | 20900 | 7 | No | No |
32 | Male | Yes | 57300 | 32100 | 6 | No | No |
32 | Male | Yes | 91900 | 44500 | 6 | Yes | No |
38 | Male | Yes | 68300 | 20100 | 4 | Yes | No |
35 | Male | No | 93900 | 36000 | 8 | Yes | No |
34 | Male | No | 61200 | 12600 | 12 | No | No |
33 | Male | Yes | 128800 | 19300 | 6 | Yes | No |
32 | Female | No | 77900 | 33300 | 13 | Yes | No |
26 | Female | Yes | 67700 | 23600 | 2 | No | No |
23 | Female | Yes | 63300 | 49400 | 7 | No | No |
32 | Male | No | 55000 | 23700 | 1 | No | No |
25 | Female | Yes | 100700 | 35700 | 4 | Yes | No |
27 | Male | Yes | 148000 | 19900 | 10 | Yes | No |
22 | Male | No | 59600 | 30600 | 9 | No | No |
33 | Female | No | 51600 | 24600 | 2 | No | No |
33 | Male | No | 48400 | 18000 | 1 | Yes | No |
29 | Male | Yes | 58500 | 0 | 6 | No | No |
33 | Female | No | 153000 | 27600 | 4 | No | No |
33 | Female | Yes | 86800 | 48800 | 4 | No | No |
42 | Male | Yes | 46400 | 30300 | 4 | No | No |
28 | Female | No | 36900 | 57700 | 6 | Yes | No |
27 | Female | Yes | 46900 | 29200 | 3 | No | No |
35 | Male | No | 57400 | 16600 | 2 | Yes | No |
31 | Female | No | 91200 | 16800 | 5 | No | No |
32 | Female | Yes | 62100 | 21400 | 8 | Yes | No |
34 | Male | Yes | 38800 | 12500 | 7 | No | No |
24 | Female | Yes | 90200 | 49300 | 13 | Yes | No |
30 | Male | Yes | 47100 | 9100 | 5 | No | No |
28 | Male | Yes | 159200 | 19200 | 8 | No | No |
32 | Female | Yes | 52700 | 15900 | 5 | Yes | No |
34 | Male | No | 73400 | 40200 | 13 | Yes | No |
31 | Male | No | 58900 | 55800 | 5 | Yes | No |
33 | Male | Yes | 81100 | 27200 | 3 | Yes | No |
31 | Female | Yes | 68400 | 20100 | 4 | Yes | No |
29 | Male | Yes | 55700 | 17300 | 3 | No | No |
25 | Male | No | 45400 | 42100 | 7 | Yes | No |
29 | Male | No | 59600 | 39500 | 5 | No | No |
25 | Female | Yes | 47700 | 21400 | 2 | No | No |
30 | Female | Yes | 57200 | 10200 | 11 | No | No |
28 | Female | Yes | 47300 | 18300 | 11 | Yes | No |
32 | Female | Yes | 58300 | 20600 | 4 | No | No |
34 | Female | Yes | 47800 | 63400 | 17 | No | No |
33 | Female | No | 61600 | 38200 | 5 | Yes | No |
24 | Male | Yes | 64000 | 50400 | 7 | No | No |
30 | Female | Yes | 87400 | 9500 | 5 | No | No |
25 | Male | Yes | 56200 | 27900 | 6 | No | No |
26 | Male | No | 100600 | 18100 | 4 | No | No |
31 | Male | No | 51100 | 39500 | 5 | No | No |
29 | Male | No | 90100 | 23400 | 5 | No | No |
31 | Male | Yes | 50800 | 34100 | 6 | No | No |
36 | Male | No | 62500 | 17500 | 6 | No | No |
34 | Female | No | 37400 | 12600 | 7 | Yes | No |
24 | Male | No | 102700 | 29200 | 3 | No | No |
28 | Male | No | 68400 | 42600 | 4 | Yes | No |
34 | Female | No | 68800 | 18100 | 4 | Yes | No |
31 | Male | No | 108000 | 11200 | 7 | No | No |
31 | Male | No | 200500 | 30500 | 9 | Yes | No |
30 | Male | No | 123000 | 39300 | 9 | No | No |
38 | Female | Yes | 64300 | 23100 | 7 | No | No |
29 | Male | No | 72600 | 38400 | 2 | No | No |
21 | Male | No | 81500 | 35300 | 6 | Yes | No |
32 | Female | Yes | 57000 | 15800 | 3 | No | No |
27 | Male | No | 101500 | 24300 | 6 | Yes | No |
29 | Male | No | 67600 | 24700 | 2 | Yes | No |
32 | Male | No | 70200 | 30800 | 7 | No | No |
32 | Male | No | 64800 | 17400 | 3 | Yes | No |
29 | Female | No | 70800 | 9100 | 2 | No | No |
35 | Male | Yes | 50300 | 23300 | 2 | Yes | No |
36 | Male | Yes | 30300 | 15000 | 2 | Yes | No |
32 | Male | Yes | 61700 | 0 | 14 | No | No |
25 | Female | No | 103500 | 31300 | 7 | Yes | No |
29 | Male | No | 33400 | 34500 | 8 | Yes | No |
22 | Male | No | 51700 | 26300 | 7 | Yes | No |
28 | Male | Yes | 76400 | 21900 | 7 | No | No |
29 | Female | Yes | 47400 | 27100 | 7 | Yes | No |
29 | Male | Yes | 118800 | 59300 | 11 | No | No |
29 | Female | Yes | 61300 | 34500 | 9 | No | No |
32 | Female | No | 97900 | 63200 | 8 | Yes | No |
30 | Male | Yes | 67400 | 7000 | 3 | No | No |
29 | Female | No | 82000 | 18100 | 7 | No | No |
30 | Female | No | 60700 | 15500 | 5 | No | No |
38 | Male | Yes | 98800 | 11800 | 4 | Yes | No |
32 | Female | No | 61800 | 27700 | 3 | Yes | No |
27 | Male | Yes | 49600 | 14600 | 6 | No | No |
29 | Male | Yes | 54700 | 17500 | 3 | No | No |
28 | Female | No | 153300 | 37900 | 7 | Yes | No |
33 | Male | Yes | 94400 | 13800 | 9 | Yes | No |
32 | Male | Yes | 39500 | 22100 | 9 | Yes | No |
35 | Female | Yes | 72400 | 24200 | 6 | Yes | No |
27 | Male | Yes | 93200 | 19500 | 6 | Yes | No |
29 | Male | No | 161400 | 23300 | 4 | Yes | No |
30 | Male | No | 56100 | 29000 | 5 | No | No |
34 | Female | Yes | 95000 | 53200 | 5 | No | No |
24 | Male | Yes | 94100 | 15300 | 6 | No | No |
30 | Female | Yes | 24300 | 25800 | 8 | Yes | No |
28 | Male | No | 49400 | 34200 | 4 | No | No |
23 | Female | No | 41200 | 25000 | 7 | No | No |
26 | Female | No | 81800 | 24500 | 7 | Yes | No |
30 | Male | No | 62400 | 25500 | 6 | No | No |
26 | Male | Yes | 117800 | 19400 | 14 | No | No |
24 | Female | Yes | 100100 | 30600 | 11 | No | No |
33 | Female | Yes | 94100 | 21100 | 9 | No | No |
30 | Female | Yes | 59300 | 83300 | 13 | No | No |
25 | Female | Yes | 89500 | 50700 | 5 | Yes | No |
24 | Male | Yes | 88900 | 29600 | 2 | No | No |
35 | Male | No | 53200 | 29700 | 6 | Yes | No |
34 | Female | No | 58600 | 12100 | 6 | Yes | No |
36 | Male | No | 54200 | 25000 | 2 | No | No |
29 | Male | No | 38500 | 37200 | 5 | No | No |
27 | Female | Yes | 69800 | 16600 | 1 | No | No |
30 | Male | No | 66200 | 58000 | 2 | No | No |
25 | Male | No | 78900 | 23400 | 4 | Yes | No |
32 | Male | No | 87200 | 21500 | 3 | Yes | No |
29 | Male | No | 79300 | 33800 | 15 | Yes | No |
27 | Male | No | 51800 | 18400 | 7 | No | No |
27 | Male | No | 70900 | 13100 | 11 | Yes | No |
33 | Male | No | 110900 | 18100 | 18 | No | No |
29 | Male | Yes | 109400 | 34300 | 2 | Yes | No |
30 | Male | No | 43800 | 23500 | 8 | Yes | No |
32 | Male | Yes | 49700 | 19200 | 6 | Yes | No |
23 | Female | Yes | 149300 | 16900 | 4 | Yes | No |
26 | Male | No | 68900 | 22100 | 5 | No | No |
34 | Female | No | 50100 | 27000 | 3 | Yes | No |
35 | Male | Yes | 32400 | 65200 | 2 | Yes | No |
31 | Female | Yes | 82700 | 11200 | 5 | Yes | No |
29 | Female | Yes | 104300 | 24800 | 12 | No | No |
25 | Male | No | 49600 | 46500 | 9 | Yes | No |
34 | Male | No | 36500 | 20000 | 7 | Yes | No |
38 | Female | Yes | 65500 | 16200 | 1 | No | No |
34 | Male | Yes | 110800 | 27200 | 9 | No | No |
32 | Female | No | 38100 | 11100 | 3 | No | No |
33 | Female | Yes | 70700 | 18500 | 2 | Yes | No |
27 | Male | Yes | 39800 | 21300 | 1 | No | Yes |
30 | Male | Yes | 60600 | 19400 | 3 | No | Yes |
32 | Female | Yes | 48200 | 17000 | 5 | Yes | No |
33 | Male | Yes | 108700 | 28700 | 4 | No | No |
26 | Female | Yes | 71300 | 20700 | 4 | Yes | No |
29 | Male | Yes | 110800 | 17100 | 4 | No | Yes |
36 | Male | Yes | 120300 | 21000 | 5 | No | Yes |
38 | Male | Yes | 130000 | 21900 | 6 | Yes | Yes |
31 | Female | Yes | 60300 | 61200 | 7 | Yes | Yes |
31 | Female | No | 70300 | 10200 | 8 | No | No |
31 | Male | No | 100700 | 23600 | 5 | Yes | No |
30 | Male | Yes | 72300 | 23900 | 4 | No | No |
30 | Male | No | 45800 | 28100 | 5 | No | Yes |
24 | Male | Yes | 51600 | 23600 | 6 | No | No |
34 | Male | No | 48200 | 70800 | 10 | No | Yes |
39 | Male | Yes | 87900 | 25100 | 14 | No | No |
27 | Male | No | 89600 | 22300 | 7 | No | No |
31 | Female | Yes | 56100 | 36200 | 6 | Yes | Yes |
32 | Male | Yes | 93600 | 20600 | 12 | Yes | Yes |
37 | Male | Yes | 100300 | 38300 | 4 | Yes | No |
29 | Male | No | 96000 | 13800 | 5 | No | No |
31 | Male | No | 105500 | 47000 | 10 | Yes | Yes |
27 | Male | No | 76400 | 30300 | 4 | No | No |
31 | Female | Yes | 77100 | 37100 | 6 | Yes | Yes |
32 | Female | Yes | 62300 | 64100 | 4 | Yes | Yes |
30 | Male | No | 52700 | 19300 | 6 | Yes | No |
26 | Female | No | 59000 | 27400 | 4 | Yes | Yes |
32 | Female | No | 42200 | 23900 | 2 | Yes | Yes |
32 | Female | No | 83500 | 27400 | 7 | No | Yes |
26 | Female | Yes | 28200 | 14400 | 3 | Yes | Yes |
24 | Male | No | 103500 | 36000 | 4 | Yes | Yes |
25 | Female | No | 35100 | 30300 | 6 | Yes | No |
28 | Female | Yes | 36800 | 30500 | 11 | Yes | Yes |
You are given data regarding subscribers to a magazine about real estate. The data gathered by taking a random sample of subscribers and then sending out questionnaires. The data includes the following variables: Age of the subscriber Gender of the subscriber (m/f) Household had children (yes/no) Household income Total financial investments (non-real-estate) Number of financial transactions made last year (including stocks, bonds and mutual funds but not real estate) Will they buy real estate within the next year? (yes/no) Will they buy an electric car in the next two years? (yes/no)
Write a report that describes a typical customer that subscribes to this magazine. The report should include at a minimum the following: (Data can be found in the file Real estate magazinePreview the document)
95% confidence interval of total financial investments (non real-estate)
95% confidence interval of proportion of customers who will buy an electric car within the next two years
95% confidence interval of household income
95% confidence interval of proportion of customers who are going to buy real estate within the next year
*****
95% confidence interval of total financial investments (non real-estate)
Solution:
Confidence interval = Xbar ± t*S/sqrt(n)
From given data, we have
Sample mean = Xbar = 28538.29268
Sample standard deviation = S = 15810.83074
Sample size = n = 410
Confidence level = 95%
Degrees of freedom = n – 1 = 409
Critical t value = 1.9658
(by using t-table)
Confidence interval = 28538.29268 ± 1.9658*15810.83074/sqrt(410)
Lower limit = 28538.29268 - 1.9658*15810.83074/sqrt(410)
Lower limit = 28538.29268 - 1534.9629 = 27003.33
Upper limit = 28538.29268 + 1.9658*15810.83074/sqrt(410)
Upper limit = 28538.29268 + 1534.9629
Confidence interval = (27003.33, 30073.26)
We are 95% confident that the average financial investment in non real estate will lies between $27, 003 and $30,073 approximately.
*****
95% confidence interval of proportion of customers who will buy an electric car within the next two years
Confidence interval = P ± Z*sqrt(P*(1 – P)/n)
From given data, we have
X = 128, n = 410, so P = X/n = 128/410 = 0.312195122
Confidence level = 95%
Critical Z value = 1.96
Confidence interval = 0.31219512 ± 1.96*sqrt(0.312195122*(1 - 0.312195122)/410)
Confidence interval = 0.31219512 ± 0.0449
Lower limit = 0.31219512 - 0.0449 = 0.2673
Upper limit = 0.31219512 + 0.0449 = 0.3570
We are 95% confident that the population proportion of the customers who will buy an electric car will lies between 26.73% and 35.70%.
*****
95% confidence interval of household income
Confidence interval = Xbar ± t*S/sqrt(n)
From given data, we have
Sample mean = Xbar = 74459.5122
Sample standard deviation = S = 34818.21067
Sample size = n = 410
Confidence level = 95%
Degrees of freedom = n – 1 = 409
Critical t value = 1.9658
(by using t-table)
Confidence interval = 74459.5122 ± 1.9658*34818.21067/sqrt(410)
Confidence interval = 74459.5122 ± 3380.2565
Lower limit = 74459.5122 - 3380.2565 = 71079.26
Upper limit = 74459.5122 + 3380.2565 = 77839.77
We are 95% confident that the average household income will be lies between $71079.26 and $77839.77.
*****
95% confidence interval of proportion of customers who are going to buy real estate within the next year
Confidence interval = P ± Z*sqrt(P*(1 – P)/n)
From given data, we have
X = 181, n = 410, so P = X/n =181/410 = 0.441463415
Confidence level = 95%
Critical Z value = 1.96
Confidence interval = 0.441463415 ± 1.96*sqrt(0.441463415*(1 - 0.441463415)/410)
Confidence interval = 0.441463415 ± 0.0481
Lower limit = 0.441463415 - 0.0481 = 0.3934
Upper limit = 0.441463415 + 0.0481 = 0.4895
We are 95% confident that the proportion of customers who are going to buy real estate is lies between two proportion value 0.3934 and 0.4895.