Question

In: Statistics and Probability

Age Gender Children Household Income ($) Total non RE Investments Financial transactions Potential RE investment? Electric...

Age Gender Children Household Income ($) Total non RE Investments Financial transactions Potential RE investment? Electric car
38 Female Yes 75200 12200 4 No No
30 Male Yes 70300 12400 4 No No
41 Female No 48200 26800 5 No No
28 Female No 95300 19600 6 Yes No
31 Female Yes 73300 15100 5 Yes No
32 Male Yes 123400 39700 3 No No
32 Male Yes 73900 21900 2 Yes No
26 Female Yes 54300 41900 2 Yes No
26 Male No 93100 16100 4 Yes No
34 Female No 60100 18400 11 Yes No
33 Female No 48600 33800 3 No No
35 Female No 43500 15500 6 Yes No
28 Female Yes 73600 17300 7 No No
30 Male Yes 68200 47900 5 No No
30 Female Yes 61900 28200 3 No No
30 Male No 57600 19400 6 Yes No
33 Male No 82300 31000 12 Yes No
28 Male Yes 64600 21300 6 No No
27 Female Yes 61100 21300 10 No No
23 Female Yes 31200 21300 7 No No
30 Female No 92600 34100 6 No No
28 Male No 68300 32600 7 No No
41 Male No 35100 0 10 Yes No
29 Male No 85700 20800 10 Yes No
33 Female Yes 140300 23100 6 Yes No
30 Male Yes 108200 39800 9 No No
29 Female No 61100 17900 2 No No
33 Male Yes 33900 33300 2 No No
30 Female Yes 54400 21800 8 Yes No
30 Male No 61200 54000 7 No No
36 Female Yes 58000 34800 12 Yes No
33 Female Yes 90700 36100 7 Yes Yes
28 Female No 95200 44300 5 Yes Yes
28 Male Yes 50500 21400 5 No No
28 Male Yes 33800 8600 6 Yes Yes
35 Male No 147400 23200 3 No No
31 Male Yes 92600 24800 4 No No
33 Female No 66200 26600 5 No Yes
32 Male No 45700 33100 8 No No
28 Male Yes 60500 27000 4 No No
27 Male No 110600 48700 6 No No
30 Female Yes 60300 17100 4 Yes No
29 Male No 75700 19900 6 No No
28 Male Yes 70100 13200 9 No No
29 Female Yes 42100 32400 6 Yes No
32 Female Yes 41700 14200 5 No Yes
33 Male No 96900 20100 5 No No
23 Male No 65700 32000 5 Yes Yes
29 Female No 50200 41900 3 No No
31 Male No 61700 12000 3 No No
33 Female Yes 44500 14000 6 No No
37 Female No 51900 10000 4 No Yes
28 Female Yes 119100 27200 5 No Yes
27 Female No 49200 34500 4 Yes Yes
33 Female Yes 39000 26000 6 No Yes
31 Female No 35000 53400 3 No Yes
30 Male Yes 104700 23100 7 No Yes
23 Male No 49300 24900 5 No No
33 Male No 74000 10900 10 No Yes
31 Female Yes 57100 52500 2 No Yes
24 Female Yes 51400 24600 16 No Yes
35 Female Yes 62100 28800 6 No No
36 Female Yes 103000 37300 11 Yes Yes
24 Male No 97900 21100 9 Yes Yes
25 Male No 123100 40900 3 No No
26 Female No 322500 24700 7 No Yes
31 Male Yes 54800 33600 8 No Yes
26 Male Yes 66500 20000 6 Yes No
26 Male Yes 33700 23900 2 No No
28 Male Yes 73600 11700 8 Yes No
26 Female Yes 71300 19200 5 No Yes
34 Male No 74200 11900 6 No No
32 Male Yes 70000 17700 8 No Yes
30 Male No 40800 23900 6 No Yes
29 Female Yes 72500 27500 4 Yes Yes
23 Male No 53300 25300 4 Yes No
28 Female No 45600 66900 5 No No
25 Male Yes 73900 18800 5 No Yes
35 Male No 83600 24400 3 No Yes
31 Male No 124700 45500 9 No Yes
35 Male No 101600 54700 3 Yes Yes
32 Female Yes 205900 32200 4 No No
29 Male No 69700 16200 3 No Yes
34 Female No 95700 16000 9 No No
30 Female Yes 46100 24000 3 Yes No
29 Male No 118600 28800 3 No Yes
42 Male No 65400 14100 5 No Yes
37 Female Yes 149300 17700 11 Yes Yes
32 Male No 125000 29800 7 No Yes
33 Female No 39800 27200 3 Yes Yes
36 Male Yes 83500 43000 2 Yes No
32 Female Yes 38700 15500 7 Yes Yes
35 Male No 102400 8700 6 Yes No
20 Male No 57700 13900 14 No Yes
30 Male No 16200 14200 6 No Yes
31 Female No 43100 27100 3 Yes No
28 Male No 43700 22300 3 Yes No
24 Female Yes 39600 29500 4 Yes Yes
30 Male No 127500 18800 2 No Yes
23 Female No 33500 26400 9 Yes Yes
29 Male Yes 48100 16400 5 Yes Yes
33 Male No 52800 39500 3 No Yes
24 Male No 54800 20900 6 Yes Yes
25 Female No 46500 52800 5 No Yes
38 Male No 60400 36500 4 No Yes
22 Female Yes 202400 30400 11 No Yes
32 Female No 71300 39800 7 No No
28 Female No 62800 18100 9 Yes No
32 Male Yes 43900 69500 7 Yes No
33 Female Yes 52200 33000 5 No Yes
32 Female Yes 64400 32100 3 Yes No
24 Male Yes 77400 15200 8 Yes No
23 Female No 65900 49800 3 Yes Yes
23 Male Yes 54100 28100 6 No No
38 Male Yes 77400 15200 6 No Yes
29 Male Yes 85900 30800 3 No Yes
28 Male No 148600 21200 3 No No
29 Male No 82100 24600 4 No Yes
36 Male Yes 64400 24700 9 Yes Yes
35 Female No 86200 26300 16 Yes No
34 Female Yes 177100 32200 6 Yes No
23 Male No 68300 20300 6 No Yes
31 Female Yes 67900 60900 6 No Yes
28 Male Yes 57300 15800 11 No Yes
33 Female No 83600 31700 6 No Yes
31 Male No 77500 0 5 Yes Yes
26 Female Yes 61700 20900 9 Yes Yes
38 Female Yes 85600 37900 12 No No
28 Male Yes 59900 22400 7 Yes Yes
27 Male No 43100 26600 5 No Yes
31 Male No 65700 20800 10 Yes No
34 Male Yes 80500 31100 7 No Yes
29 Male Yes 88400 31200 5 No Yes
27 Male No 40200 0 2 No No
26 Male Yes 84000 38900 7 Yes Yes
33 Male Yes 34400 29500 4 Yes Yes
33 Male Yes 55800 16100 5 No No
34 Male Yes 64900 15800 7 No Yes
31 Male Yes 41100 27500 4 No Yes
37 Female Yes 39100 13000 7 No No
27 Male No 58200 68100 5 Yes No
32 Male Yes 46500 18500 7 Yes Yes
25 Female Yes 45100 27100 2 No Yes
31 Female Yes 69900 25900 5 No Yes
38 Male No 63700 18400 2 No No
31 Female No 40500 59200 4 No Yes
28 Female Yes 62600 67900 5 No No
29 Female Yes 73400 36700 7 No Yes
34 Female No 35000 32400 9 No Yes
35 Female No 114000 10300 4 Yes Yes
30 Male No 70800 39300 7 No Yes
32 Female Yes 60300 13800 6 No Yes
31 Male No 78700 11100 4 No Yes
29 Female No 179700 28600 2 No No
31 Male Yes 157200 22100 6 No Yes
31 Female No 67300 16700 6 No Yes
22 Female No 49800 19400 6 Yes Yes
19 Male Yes 43400 54600 4 Yes Yes
31 Female Yes 71100 41500 2 Yes Yes
22 Female Yes 42100 23300 9 No No
26 Male Yes 42200 29700 8 No Yes
34 Male No 63300 33200 2 Yes Yes
37 Male No 55700 56300 5 Yes No
36 Female No 107900 25900 5 No Yes
27 Female Yes 44800 63500 6 Yes Yes
32 Male No 94700 18700 7 Yes Yes
27 Female No 112700 49700 4 No Yes
32 Male Yes 114900 15000 5 Yes Yes
24 Female Yes 112700 8200 7 Yes No
38 Female No 60900 36300 9 Yes No
33 Female No 137800 50200 7 No Yes
19 Male Yes 47200 13500 10 No Yes
33 Male Yes 70900 37500 4 Yes Yes
25 Female No 52000 26800 7 No No
27 Male Yes 166500 30300 5 No No
35 Female No 88000 46300 18 No Yes
29 Male No 41800 14400 9 Yes Yes
31 Male No 60300 0 4 Yes Yes
29 Female Yes 53400 18800 5 Yes Yes
31 Female Yes 46700 40900 5 No Yes
32 Male Yes 59600 23300 7 Yes No
22 Female Yes 27700 11900 4 No No
29 Male Yes 48900 28100 10 Yes Yes
28 Female No 56600 20400 8 No Yes
26 Male No 32500 14900 7 No No
33 Female Yes 74500 33900 3 No No
35 Male No 69800 15100 6 No No
27 Male Yes 48100 133400 5 No No
33 Female Yes 95900 18300 7 Yes Yes
30 Female No 76500 28700 10 Yes Yes
28 Male No 43700 50900 6 Yes Yes
35 Female Yes 72700 25600 4 No Yes
34 Female No 140100 30700 0 Yes Yes
28 Male No 76600 64300 5 Yes Yes
30 Male Yes 65300 67200 7 Yes Yes
37 Male Yes 161100 62200 11 No Yes
32 Male No 64900 33100 12 No No
21 Male Yes 59800 26000 4 No No
31 Female Yes 87900 18400 5 Yes Yes
31 Male Yes 174900 53000 12 Yes Yes
23 Male Yes 40700 46300 3 No No
34 Male Yes 36700 32700 5 Yes Yes
31 Male No 167800 50900 4 No Yes
28 Female No 168500 19200 2 No No
30 Male Yes 112100 18300 3 Yes No
25 Male No 65500 17800 2 No No
32 Female No 73500 41800 6 Yes No
30 Male Yes 59100 7100 7 Yes No
28 Male No 73900 15500 8 Yes No
33 Male Yes 120800 22900 4 No No
34 Female Yes 25100 10000 4 Yes No
34 Female Yes 137900 53300 6 No No
33 Female Yes 70200 32400 7 Yes No
26 Male No 90900 85600 2 No No
28 Female No 65500 26400 6 Yes No
23 Male No 86200 30400 5 Yes No
31 Male No 45900 24000 8 Yes No
28 Female No 76000 17500 0 No No
29 Male Yes 82700 11000 5 No No
30 Female Yes 57400 9400 5 No No
30 Male No 53700 34700 12 No No
31 Female Yes 29900 44200 3 Yes No
22 Male Yes 94800 20700 5 No No
34 Male Yes 67300 29000 3 No No
30 Female Yes 41200 29800 3 No No
34 Female Yes 70400 95200 21 Yes No
25 Male Yes 120600 21500 5 Yes No
32 Female No 63900 23100 4 No No
31 Female Yes 98800 13900 5 Yes No
29 Female Yes 53300 28900 7 No No
28 Female Yes 30000 70400 8 No No
26 Female Yes 93200 12400 4 No No
26 Male No 84100 27800 9 Yes No
26 Female Yes 124000 19900 5 No No
29 Female Yes 73400 28000 7 No No
32 Female No 45500 75000 6 Yes No
37 Female Yes 88400 14000 9 No No
32 Male No 74900 20900 4 No No
33 Female Yes 51700 47200 6 No No
36 Female Yes 78700 57200 5 No No
30 Male Yes 30700 42900 7 Yes No
31 Male Yes 56000 44200 1 Yes No
28 Female Yes 88400 28000 4 Yes No
25 Male Yes 201700 24500 6 Yes No
29 Male Yes 71600 18100 9 No No
31 Female Yes 59000 20900 7 No No
32 Male Yes 57300 32100 6 No No
32 Male Yes 91900 44500 6 Yes No
38 Male Yes 68300 20100 4 Yes No
35 Male No 93900 36000 8 Yes No
34 Male No 61200 12600 12 No No
33 Male Yes 128800 19300 6 Yes No
32 Female No 77900 33300 13 Yes No
26 Female Yes 67700 23600 2 No No
23 Female Yes 63300 49400 7 No No
32 Male No 55000 23700 1 No No
25 Female Yes 100700 35700 4 Yes No
27 Male Yes 148000 19900 10 Yes No
22 Male No 59600 30600 9 No No
33 Female No 51600 24600 2 No No
33 Male No 48400 18000 1 Yes No
29 Male Yes 58500 0 6 No No
33 Female No 153000 27600 4 No No
33 Female Yes 86800 48800 4 No No
42 Male Yes 46400 30300 4 No No
28 Female No 36900 57700 6 Yes No
27 Female Yes 46900 29200 3 No No
35 Male No 57400 16600 2 Yes No
31 Female No 91200 16800 5 No No
32 Female Yes 62100 21400 8 Yes No
34 Male Yes 38800 12500 7 No No
24 Female Yes 90200 49300 13 Yes No
30 Male Yes 47100 9100 5 No No
28 Male Yes 159200 19200 8 No No
32 Female Yes 52700 15900 5 Yes No
34 Male No 73400 40200 13 Yes No
31 Male No 58900 55800 5 Yes No
33 Male Yes 81100 27200 3 Yes No
31 Female Yes 68400 20100 4 Yes No
29 Male Yes 55700 17300 3 No No
25 Male No 45400 42100 7 Yes No
29 Male No 59600 39500 5 No No
25 Female Yes 47700 21400 2 No No
30 Female Yes 57200 10200 11 No No
28 Female Yes 47300 18300 11 Yes No
32 Female Yes 58300 20600 4 No No
34 Female Yes 47800 63400 17 No No
33 Female No 61600 38200 5 Yes No
24 Male Yes 64000 50400 7 No No
30 Female Yes 87400 9500 5 No No
25 Male Yes 56200 27900 6 No No
26 Male No 100600 18100 4 No No
31 Male No 51100 39500 5 No No
29 Male No 90100 23400 5 No No
31 Male Yes 50800 34100 6 No No
36 Male No 62500 17500 6 No No
34 Female No 37400 12600 7 Yes No
24 Male No 102700 29200 3 No No
28 Male No 68400 42600 4 Yes No
34 Female No 68800 18100 4 Yes No
31 Male No 108000 11200 7 No No
31 Male No 200500 30500 9 Yes No
30 Male No 123000 39300 9 No No
38 Female Yes 64300 23100 7 No No
29 Male No 72600 38400 2 No No
21 Male No 81500 35300 6 Yes No
32 Female Yes 57000 15800 3 No No
27 Male No 101500 24300 6 Yes No
29 Male No 67600 24700 2 Yes No
32 Male No 70200 30800 7 No No
32 Male No 64800 17400 3 Yes No
29 Female No 70800 9100 2 No No
35 Male Yes 50300 23300 2 Yes No
36 Male Yes 30300 15000 2 Yes No
32 Male Yes 61700 0 14 No No
25 Female No 103500 31300 7 Yes No
29 Male No 33400 34500 8 Yes No
22 Male No 51700 26300 7 Yes No
28 Male Yes 76400 21900 7 No No
29 Female Yes 47400 27100 7 Yes No
29 Male Yes 118800 59300 11 No No
29 Female Yes 61300 34500 9 No No
32 Female No 97900 63200 8 Yes No
30 Male Yes 67400 7000 3 No No
29 Female No 82000 18100 7 No No
30 Female No 60700 15500 5 No No
38 Male Yes 98800 11800 4 Yes No
32 Female No 61800 27700 3 Yes No
27 Male Yes 49600 14600 6 No No
29 Male Yes 54700 17500 3 No No
28 Female No 153300 37900 7 Yes No
33 Male Yes 94400 13800 9 Yes No
32 Male Yes 39500 22100 9 Yes No
35 Female Yes 72400 24200 6 Yes No
27 Male Yes 93200 19500 6 Yes No
29 Male No 161400 23300 4 Yes No
30 Male No 56100 29000 5 No No
34 Female Yes 95000 53200 5 No No
24 Male Yes 94100 15300 6 No No
30 Female Yes 24300 25800 8 Yes No
28 Male No 49400 34200 4 No No
23 Female No 41200 25000 7 No No
26 Female No 81800 24500 7 Yes No
30 Male No 62400 25500 6 No No
26 Male Yes 117800 19400 14 No No
24 Female Yes 100100 30600 11 No No
33 Female Yes 94100 21100 9 No No
30 Female Yes 59300 83300 13 No No
25 Female Yes 89500 50700 5 Yes No
24 Male Yes 88900 29600 2 No No
35 Male No 53200 29700 6 Yes No
34 Female No 58600 12100 6 Yes No
36 Male No 54200 25000 2 No No
29 Male No 38500 37200 5 No No
27 Female Yes 69800 16600 1 No No
30 Male No 66200 58000 2 No No
25 Male No 78900 23400 4 Yes No
32 Male No 87200 21500 3 Yes No
29 Male No 79300 33800 15 Yes No
27 Male No 51800 18400 7 No No
27 Male No 70900 13100 11 Yes No
33 Male No 110900 18100 18 No No
29 Male Yes 109400 34300 2 Yes No
30 Male No 43800 23500 8 Yes No
32 Male Yes 49700 19200 6 Yes No
23 Female Yes 149300 16900 4 Yes No
26 Male No 68900 22100 5 No No
34 Female No 50100 27000 3 Yes No
35 Male Yes 32400 65200 2 Yes No
31 Female Yes 82700 11200 5 Yes No
29 Female Yes 104300 24800 12 No No
25 Male No 49600 46500 9 Yes No
34 Male No 36500 20000 7 Yes No
38 Female Yes 65500 16200 1 No No
34 Male Yes 110800 27200 9 No No
32 Female No 38100 11100 3 No No
33 Female Yes 70700 18500 2 Yes No
27 Male Yes 39800 21300 1 No Yes
30 Male Yes 60600 19400 3 No Yes
32 Female Yes 48200 17000 5 Yes No
33 Male Yes 108700 28700 4 No No
26 Female Yes 71300 20700 4 Yes No
29 Male Yes 110800 17100 4 No Yes
36 Male Yes 120300 21000 5 No Yes
38 Male Yes 130000 21900 6 Yes Yes
31 Female Yes 60300 61200 7 Yes Yes
31 Female No 70300 10200 8 No No
31 Male No 100700 23600 5 Yes No
30 Male Yes 72300 23900 4 No No
30 Male No 45800 28100 5 No Yes
24 Male Yes 51600 23600 6 No No
34 Male No 48200 70800 10 No Yes
39 Male Yes 87900 25100 14 No No
27 Male No 89600 22300 7 No No
31 Female Yes 56100 36200 6 Yes Yes
32 Male Yes 93600 20600 12 Yes Yes
37 Male Yes 100300 38300 4 Yes No
29 Male No 96000 13800 5 No No
31 Male No 105500 47000 10 Yes Yes
27 Male No 76400 30300 4 No No
31 Female Yes 77100 37100 6 Yes Yes
32 Female Yes 62300 64100 4 Yes Yes
30 Male No 52700 19300 6 Yes No
26 Female No 59000 27400 4 Yes Yes
32 Female No 42200 23900 2 Yes Yes
32 Female No 83500 27400 7 No Yes
26 Female Yes 28200 14400 3 Yes Yes
24 Male No 103500 36000 4 Yes Yes
25 Female No 35100 30300 6 Yes No
28 Female Yes 36800 30500 11 Yes Yes

You are given data regarding subscribers to a magazine about real estate. The data gathered by taking a random sample of subscribers and then sending out questionnaires. The data includes the following variables: Age of the subscriber Gender of the subscriber (m/f) Household had children (yes/no) Household income Total financial investments (non-real-estate) Number of financial transactions made last year (including stocks, bonds and mutual funds but not real estate) Will they buy real estate within the next year? (yes/no) Will they buy an electric car in the next two years? (yes/no)

Write a report that describes a typical customer that subscribes to this magazine. The report should include at a minimum the following: (Data can be found in the file Real estate magazinePreview the document)

95% confidence interval of total financial investments (non real-estate)

95% confidence interval of proportion of customers who will buy an electric car within the next two years

95% confidence interval of household income

95% confidence interval of proportion of customers who are going to buy real estate within the next year

Solutions

Expert Solution

*****

95% confidence interval of total financial investments (non real-estate)

Solution:

Confidence interval = Xbar ± t*S/sqrt(n)

From given data, we have

Sample mean = Xbar = 28538.29268

Sample standard deviation = S = 15810.83074

Sample size = n = 410

Confidence level = 95%

Degrees of freedom = n – 1 = 409

Critical t value = 1.9658

(by using t-table)

Confidence interval = 28538.29268 ± 1.9658*15810.83074/sqrt(410)

Lower limit = 28538.29268 - 1.9658*15810.83074/sqrt(410)

Lower limit = 28538.29268 - 1534.9629 = 27003.33

Upper limit = 28538.29268 + 1.9658*15810.83074/sqrt(410)

Upper limit = 28538.29268 + 1534.9629

Confidence interval = (27003.33, 30073.26)

We are 95% confident that the average financial investment in non real estate will lies between $27, 003 and $30,073 approximately.

*****

95% confidence interval of proportion of customers who will buy an electric car within the next two years

Confidence interval = P ± Z*sqrt(P*(1 – P)/n)

From given data, we have

X = 128, n = 410, so P = X/n = 128/410 = 0.312195122

Confidence level = 95%

Critical Z value = 1.96

Confidence interval = 0.31219512 ± 1.96*sqrt(0.312195122*(1 - 0.312195122)/410)

Confidence interval = 0.31219512 ± 0.0449

Lower limit = 0.31219512 - 0.0449 = 0.2673

Upper limit = 0.31219512 + 0.0449 = 0.3570

We are 95% confident that the population proportion of the customers who will buy an electric car will lies between 26.73% and 35.70%.

*****

95% confidence interval of household income

Confidence interval = Xbar ± t*S/sqrt(n)

From given data, we have

Sample mean = Xbar = 74459.5122

Sample standard deviation = S = 34818.21067

Sample size = n = 410

Confidence level = 95%

Degrees of freedom = n – 1 = 409

Critical t value = 1.9658

(by using t-table)

Confidence interval = 74459.5122 ± 1.9658*34818.21067/sqrt(410)

Confidence interval = 74459.5122 ± 3380.2565

Lower limit = 74459.5122 - 3380.2565 = 71079.26

Upper limit = 74459.5122 + 3380.2565 = 77839.77

We are 95% confident that the average household income will be lies between $71079.26 and $77839.77.

*****

95% confidence interval of proportion of customers who are going to buy real estate within the next year

Confidence interval = P ± Z*sqrt(P*(1 – P)/n)

From given data, we have

X = 181, n = 410, so P = X/n =181/410 = 0.441463415

Confidence level = 95%

Critical Z value = 1.96

Confidence interval = 0.441463415 ± 1.96*sqrt(0.441463415*(1 - 0.441463415)/410)

Confidence interval = 0.441463415 ± 0.0481

Lower limit = 0.441463415 - 0.0481 = 0.3934

Upper limit = 0.441463415 + 0.0481 = 0.4895

We are 95% confident that the proportion of customers who are going to buy real estate is lies between two proportion value 0.3934 and 0.4895.


Related Solutions

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT