Question

In: Physics

A 0.05 kg block executes damped oscillation when it is attached to a spring with a...

A 0.05 kg block executes damped oscillation when it is attached to a spring with a spring constant of 5 N/m. The damping constant for the medium is 0.1 N-s/m. At t=0, the block is displaced to 10 cm and it’s velocity is zero. Set up a differential equation corresponding to its motion. From the general solution for x(t) for this oscillator, do you think it is an underdamped, overdamped, or critically damped case? Justify your answer.

Solutions

Expert Solution

Let x(t) be the position of the mass from the equilibrium position. Then, from the equation of motioon, we have

   

Now, as m = 0.05 kg, b = 0.1, k = 5 N/m, so, we have
  
b)
  
To solve this equation, we use the ansatz
   
And we get




  
And so, the general solution is
   



where, we have redefined the coefficients.
We have the initial conditions,

And from the first condition, x(t=0) = 0.1 m, we have
  
So, we get
  
And taking the derivative, we get
  

And so, using the 2nd initial condition,
  

So, we get
  

As the motion is oscillating with frequency
  
So, the motion is underdamped.


Related Solutions

1A) A 0.3-kg block, attached to a spring, executes simple harmonic motion according to x =...
1A) A 0.3-kg block, attached to a spring, executes simple harmonic motion according to x = 0.08 cos (35 rad/s⋅t), where x is in meters and t is in seconds. Find the total energy of the spring-mass system. Ans.E =1.18 J 1B) A 1.5-kg cart attached to an ideal spring with a force constant (spring constant) of 20 N/m oscillates on a horizontal, frictionless track. At time t = 0.00 s, the cart is released from rest at position x...
A mass of 0.30 kg is attached to a spring and set into oscillation on a...
A mass of 0.30 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.48 m)cos[(8 rad/s)t]. Determine the following. (a) amplitude of oscillation for the oscillating mass. Answer in m (b) force constant for the spring. Answer in N/m (c) position of the mass after it has been oscillating for one half a period. Answer in m (d) position of the mass...
A block with a mass of 0.488 kg is attached to a spring of spring constant...
A block with a mass of 0.488 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What is the amplitude of the oscillation? A block with a mass of 0.976 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What...
A 10 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 10 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.4 kN/m. The block is pulled to the right so that the spring is stretched 5.8 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 38 N. (a) What is the kinetic energy of the block when it has moved 2.2 cm from...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 2.9 kN/m. The block is pulled to the right so that the spring is stretched 8.4 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 2.7 cm from...
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A 5 kg block is attached to a horizontally-mounted spring with a spring constant of 600...
A 5 kg block is attached to a horizontally-mounted spring with a spring constant of 600 J/m2. The spring is extended by 10 cm from its normal length and the block is then released with an additional pull that imparts an initial velocity of 50 cm/s. The angular velocity (in rad/s) is A rad/s. The phase shift or off set (in degrees) is B degrees. The amplitude (in cm) is C cm. Please highlight where the given mass, spring constant,...
A 15.0 kg block (#2) is attached to a very horizontal light spring with a spring...
A 15.0 kg block (#2) is attached to a very horizontal light spring with a spring constant of 500 N/m and is resting on a frictionless horizontal table. It is struck by a 3.00 kg block (#1) traveling horizontally at 8.00 m/s. After the collision, block #1 rebounds with a speed of 2.0 m/s in the opposite direction. What is the maximum distance the spring compresses?
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant is 50 N/m is given by x = A cos ωt, where A = 12 cm. In the first complete cycle, find the values of x and t at which the kinetic energy is equal to one half the potential energy.
a. Consider a 1.5-kg mass of a block attached to a spring of spring constant 16.0...
a. Consider a 1.5-kg mass of a block attached to a spring of spring constant 16.0 N/m on a frictionless table. (i) At rest/At Equilibrium: The spring-mass system is at rest, the mass is at the equilibrium position. Calculate the potential energy (PEs), kinetic energy (KE) and total mechanical energy (Etot) of the spring-mass system. (ii) At rest/Displaced from Equilibrium: The mass is displaced 6 cm to the left (negative X-direction) by compressing the spring, the spring-mass system is at...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT