In: Chemistry
The atmospheric CO2 concentration is increasing by about 2 ppm a year. Calculate the net amount (mass balance) of CO2 (in Tg of C) added to the atmosphere each year. If the sum of CO2 sources is 208,800 Tg of C, what is the size, in Tg of C, of all sinks?
The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60 degrees N excluding Europe (10 degrees W-63 degrees E), neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50-60 degrees N, again excluding Europe, showed a trend of 8-11 Tg C yr(-2) over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170-230 Tg C yr(-1) larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release.