In: Finance
The price of Chive Corp. stock will be either $67 or $95 at the end of the year. Call options are available with one year to expiration. T-bills currently yield 5 percent.
a. |
Suppose the current price of the company's stock is $75. What is the value of the call option if the exercise price is $65 per share? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) |
b. |
Suppose the exercise price is $90 and the current price of the company's stock is $75. What is the value of the call option now? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) |
a
Upmove (U)= High price/current price=95/75=1.2667 | ||||||
Down move (D)= Low price/current price=67/75=0.8933 | ||||||
Risk neutral probability for up move | ||||||
q = (e^(risk free rate*time)-D)/(U-D) | ||||||
=(e^(0.05*1)-0.8933)/(1.2667-0.8933)=0.42305 | ||||||
Call option payoff at high price (payoff H) | ||||||
=Max(High price-strike price,0) | ||||||
=Max(95-65,0) | ||||||
=Max(30,0) | ||||||
=30 | ||||||
Call option payoff at low price (Payoff L) | ||||||
=Max(Low price-strike price,0) | ||||||
=Max(67-65,0) | ||||||
=Max(2,0) | ||||||
=2 | ||||||
Price of call option = e^(-r*t)*(q*Payoff H+(1-q)*Payoff L) | ||||||
=e^(-0.05*1)*(0.423048*30+(1-0.423048)*2) | ||||||
=13.17 |
b
Upmove (U)= High price/current price=95/75=1.2667 | ||||||
Down move (D)= Low price/current price=67/75=0.8933 | ||||||
Risk neutral probability for up move | ||||||
q = (e^(risk free rate*time)-D)/(U-D) | ||||||
=(e^(0.05*1)-0.8933)/(1.2667-0.8933)=0.42305 | ||||||
Call option payoff at high price (payoff H) | ||||||
=Max(High price-strike price,0) | ||||||
=Max(95-90,0) | ||||||
=Max(5,0) | ||||||
=5 | ||||||
Call option payoff at low price (Payoff L) | ||||||
=Max(Low price-strike price,0) | ||||||
=Max(67-90,0) | ||||||
=Max(-23,0) | ||||||
=0 | ||||||
Price of call option = e^(-r*t)*(q*Payoff H+(1-q)*Payoff L) | ||||||
=e^(-0.05*1)*(0.423048*5+(1-0.423048)*0) | ||||||
=2.01 |