Question

In: Electrical Engineering

What is the cutoff frequency? What is the Butterworth response of a filter? What are the...

  1. What is the cutoff frequency?

  2. What is the Butterworth response of a filter?

  3. What are the differences between first-order and second-order filters?

Solutions

Expert Solution

i) CUTOFF FREQUENCY

The cutoff frequency is given by the equation:

Cutoff Frequency

Cutoff frequency is the frequency at which magnitude if filter is is 3db lower than maximum magnitude.

thus, all high frequencies above the cut-off point band rolls down to zero at 20dB per decade or 6dB per octave in the stop band for first order filter.

ii) Frequency response of Butterworth filter

Butterworth Filter Ideal Frequency Response

The frequency response of the nth order Butterworth filter is given as

Where ‘n’ indicates the filter order, ‘ω’ = 2πƒ, Epsilon ε is maximum pass band gain, (Amax). If we define Amax at cut-off frequency -3dB corner point (ƒc), then ε will be equal to one and thus ε2 will also be equal to one. But, if we want to define Amax at another voltage gain value, consider 1dB, or 1.1220 (1dB = 20logAmax) then the value of ε can be found by:

Where, H0 represents the maximum pass band gain and H1 represents the minimum pass band gain. Now, if we transpose the above equation, then we will get

By using the standard voltage transfer function, we can define the frequency response of Butterworth filter as

Where, Vout indicates voltage of output signal, Vin indicates input voltage signal, j is square root of -1, and ‘ω’ = 2πƒ is the radian frequency. The above equation can be represented in S-domain as given below

iii) Difference between First order and second order filter

a.)

Order basically defines the rolloff rate how does it attenuate the signals a first order filter has -20db/decade roll off past of cutoff frequency.

Second order has -40 db/ decade.

b.)

Basically 2nd order is better in filtering than first order.

c.)

A first order filter would have one capacitor or one inductor, that affects the filters frequency response. A second order filter would have two capacitors or two inductors, or one capacitor and one inductor, that affects the filter's frequency response.


Related Solutions

a. Design a broadband Butterworth bandpass filter with a lower cutoff frequency of 500 Hz and...
a. Design a broadband Butterworth bandpass filter with a lower cutoff frequency of 500 Hz and an upper cutoff frequency of 4500 Hz. The passband gain of the filter is 20 dB. The gain should be down at least 15 dB at 200 Hz and 11.25 kHz. Use 20 nF capacitors in the high-pass circuit and 10 k\Omega resistors in the low-pass circuit. b) Draw a circuit diagram of the filter and label all the components.
Butterworth filter a)Design a 5th order low pass Butterworth low-pass filter with a cut-off frequency of...
Butterworth filter a)Design a 5th order low pass Butterworth low-pass filter with a cut-off frequency of 1592 Hz and a dc gain of 3dB. Find and present the mathematical transfer function of the filter, showing all your steps. b) Write a Matlab code to plot the magnitude of this function with a linear scale in dB units on the ordinate, and a log scale of frequency on the abscissa. The plot range should be: ordinate- linear scale from -100dB to...
Design an active high pass filter with a high frequency gain of 5 and a cutoff...
Design an active high pass filter with a high frequency gain of 5 and a cutoff frequency of 2kHz. Use a 0.1 uF capacitor in your design.
Design a bandstop filter with a cutoff frequency of -3dB at W1 = 100 rad/s and...
Design a bandstop filter with a cutoff frequency of -3dB at W1 = 100 rad/s and W2 = 10,000rad/s. Confirm by plotting the magnitude and phase of the transfer function in matlab.
Design a 3-pole Butterworth low-pass filter with a DC gain of 5 and a -3db frequency...
Design a 3-pole Butterworth low-pass filter with a DC gain of 5 and a -3db frequency of 550Hz. design should use capacitors of the following values: 0.01uf, 0.022uf, 0.033uf, 0.047uf, 0.056uf, 0.1uf, 0.22uf, and 1uf.
Create a 2nd order Butterworth 150 Hz frequency low pass filter. Please provide transfer function and...
Create a 2nd order Butterworth 150 Hz frequency low pass filter. Please provide transfer function and frequency response. Thank you
Design a first order, high pass active filter with a cutoff frequency of 20 krad/sec. Cascade...
Design a first order, high pass active filter with a cutoff frequency of 20 krad/sec. Cascade Four of this filter designed and find reasonable values for the resistor and capacitor. Obtain the transfer function and show a circuit schematic for your filter. Plot the Bode plot
What I am trying to do is to design a Butterworth Bandpass filter using Matlab, High...
What I am trying to do is to design a Butterworth Bandpass filter using Matlab, High frequency must equal to 16 Hz and lower frequency must be 10Hz (passBand). and the input signal must be a white noise signal. here is my code : mu=0; sigma=2; X= sigma*randn(500,1)+mu; %Generating White Noise signal Fs=500;%Sampling Frequency Fh= 16; Fl=10; order=6; [b,a]=butter(order,[Fh Fl]/(Fs/2),'bandpass');%Butterworth BandPass filter XX=filtfilt(b,a,X);%filter the signal both forward and backword in time Actually, I am not sure about Fs value that...
The work function for aluminum is 4.08 eV. (a) What is the cutoff frequency of light...
The work function for aluminum is 4.08 eV. (a) What is the cutoff frequency of light incident on an aluminum target that releases photoelectrons from its surface? (b) Find the corresponding cutoff wavelength. (c) If photons of energy 5.0 eV are incident on an aluminum target what is the maximum kinetic energy of the ejected photoelectrons? (d) what is the maximum velocity of a photoelectron traveling from the anode to the cathode of a photocell? (e) If a blue beam...
Part 5 The frequency response of RLC circuits : Design a passive filter: Band Pass, ISM...
Part 5 The frequency response of RLC circuits : Design a passive filter: Band Pass, ISM Band 433.050 MHz to 434.790 MHz . Prepare a report to describe your design. Your results should include the following : i. Simulation of the designed filters by using any simulation software. ii. Attach a 1 kΩ resistor as a load to the initial design of your filter. Explain how the transfer function change. Does the type of filter change? Does the cut-off frequency...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT