In: Statistics and Probability
Below are the values for two variables x and y obtained from a sample of size 5. We want to build a regression equation based the sample data.
| 
 ŷ = b₀ + b₁x  | 
| y | x | 
| 16 | 5 | 
| 21 | 10 | 
| 8 | 6 | 
| 28 | 12 | 
| 53 | 14 | 
| 
 11  | 
 On average the observed y deviate from the predicted y by,  | 
||||
| 
 a  | 
 10.73  | 
||||
| 
 b  | 
 10.04  | 
||||
| 
 c  | 
 9.53  | 
||||
| 
 d  | 
 8.76  | 
||||
| 
 12  | 
 Sum of squares total (SST) is,  | 
||
| 
 a  | 
 1096.3  | 
||
| 
 b  | 
 1178.8  | 
||
| 
 c  | 
 1296.7  | 
||
| 
 d  | 
 1361.5  | 
||
| 
 13  | 
 Sum of squares regression (SSR) is,  | 
||
| 
 a  | 
 906.06  | 
||
| 
 b  | 
 983.56  | 
||
| 
 c  | 
 1008.47  | 
||
| 
 d  | 
 1065.20  | 
||
| 
 14  | 
 The fraction of variations in y explained by x is:  | 
|||
| 
 a  | 
 0.5534  | 
|||
| 
 b  | 
 0.6149  | 
|||
| 
 c  | 
 0.7686  | 
|||
| 
 d  | 
 0.8455  | 
|||
| 
 15  | 
 The x and y data are sample data from the population of X and Y to compute b₁ as an estimate of the population slope parameter β₁. The sample statistic b₁ is the estimator of the population parameter β₁. The estimated measure of dispersion of the sample statistic b₁ is,  | 
|||||||
| 
 a  | 
 0.929  | 
|||||||
| 
 b  | 
 1.239  | 
|||||||
| 
 c  | 
 1.549  | 
|||||||
| 
 d  | 
 1.936  | 
|||||||
| 
 16  | 
 The margin of error for a 95% confidence interval for β₁ is,  | 
||||
| 
 a  | 
 4.77  | 
||||
| 
 b  | 
 4.34  | 
||||
| 
 c  | 
 3.94  | 
||||
| 
 d  | 
 2.96  | 
||||
| 
 17  | 
 To perform a hypothesis test with the null hypothesis H₀: β₁ = 0, we need a test statistic. The test statistic for this hypothesis test is,  | 
|||||||
| 
 a  | 
 1.741  | 
|||||||
| 
 b  | 
 2.123  | 
|||||||
| 
 c  | 
 2.589  | 
|||||||
| 
 d  | 
 3.157  | 
|||||||
I have answered the question below
Please up vote for the same and thanks!!!
Do reach out in the comments for any queries
Answer:

11)
9.53
12)
1178.8
13)
906.06
14)
| 
 0.7686  | 
15)
1.239
16)
confidence interval for slope      
           
α=   0.05      
       
t critical value=   t α/2 =   
3.182   [excel function: =t.inv.2t(α/2,df) ]  
   
estimated std error of slope = Se/√Sxx =   
9.53491   /√   59.20   =  
1.239
margin of error ,E= t*std error = 3.182 * 1.239 = 3.94
17)
t stat = estimated slope/std error =ß1 /Se(ß1) = 3.9122 / 1.2392 = 3.157