Question

In: Statistics and Probability

3). You are given the claim that the mean of a population is not equal to...

3). You are given the claim that the mean of a population is not equal to 24 cm. You
don’t believe in this claim and so you want to test it. Suppose that you know the
population standard deviation is 4 cm, and the population distribution is approximately
normal. To test this claim, you take a random sample as follows
X = (20, 23, 22, 24, 24, 24, 25, 26, 24, 23, 27, 24, 29, 20, 25, 26, 28).
Is there enough evidence to support the claim? Justify your answer completely.

4) Based on problem 3 above, compute the 95 % confidence interval of the true mean.
Interpret this confidence interval and also explain what is the meaning of the 95%
confidence level.

Solutions

Expert Solution

Question 3

Here, we have to use one sample z test for the population mean.

The null and alternative hypotheses are given as below:

H0: µ = 24 versus Ha: µ ≠ 24

This is a two tailed test.

The test statistic formula is given as below:

Z = (Xbar - µ)/[σ/sqrt(n)]

From given data, we have

µ = 24

Xbar = 24.35294118

σ = 4

n = 17

α = 0.05

Critical value = -1.96 and 1.96

(by using z-table or excel)

Z = (24.35294118 - 24)/[4/sqrt(17)]

Z = 0.3638

P-value = 0.7160

(by using Z-table)

P-value > α = 0.05

So, we do not reject the null hypothesis

There is sufficient evidence to conclude that the mean of a population is not equal to 24 cm.

Question 4

Confidence interval for Population mean is given as below:

Confidence interval = Xbar ± Z*σ/sqrt(n)

From given data, we have

Confidence level = 95%

Critical Z value = 1.96

(by using z-table)

Confidence interval = Xbar ± Z*σ/sqrt(n)

Confidence interval = 24.35 ± 1.96*4/sqrt(17)

Confidence interval = 24.35 ± 1.9014

Lower limit = 24.35 - 1.9014 = 22.45

Upper limit = 24.35 + 1.9014 = 26.25

Confidence interval = (22.45, 26.25)

WE are 95% confident that the population mean will lies between above interval.


Related Solutions

3). You are given the claim that the mean of a population is not equal to...
3). You are given the claim that the mean of a population is not equal to 24 cm. You don’t believe in this claim and so you want to test it. Suppose that you know the population standard deviation is 4 cm, and the population distribution is approximately normal. To test this claim, you take a random sample as follows X = (20, 23, 22, 24, 24, 24, 25, 26, 24, 23, 27, 24, 29, 20, 25, 26, 28). Is...
You wish to test the claim that the first population mean is not equal to the...
You wish to test the claim that the first population mean is not equal to the second population mean at a significance level of α=0.02α=0.02.      Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1≠μ2Ha:μ1≠μ2 You obtain the following two samples of data. Sample #1 Sample #2 80.8 78.4 96.5 55.2 74.6 53.8 57.1 43.8 108.1 65.1 57.8 85.7 69.5 89.5 93.0 98.7 75.1 98.0 87.9 76.7 78.0 88.8 84.0 96.9 76.7 What is the test statistic for this sample? test statistic =  Round to 4 decimal places....
You wish to test the claim that the first population mean is not equal to the...
You wish to test the claim that the first population mean is not equal to the second population mean at a significance level of α=0.005α=0.005.      Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1≠μ2Ha:μ1≠μ2 You obtain the following two samples of data. Sample #1 Sample #2 100.7 93.4 98.6 83.3 98.6 99.1 83.0 91.4 104.9 81.0 99.6 79.1 75.2 79.0 74.8 83.1 86.4 82.6 65.1 65.9 82.0 81.0 81.8 95.3 80.0 92.0 80.6 What is the test statistic for this sample? test statistic =  Round to 3...
Test the claim that the true population mean is statistically equal to 40, given a sample...
Test the claim that the true population mean is statistically equal to 40, given a sample of 150 observations for which the mean is 41.6. Assume that the true population standard deviation is 9, and test at the .01 level of significance. Provide a complete solution using the classical approach
Test the claim about the population​ mean, mu​, at the given level of significance using the...
Test the claim about the population​ mean, mu​, at the given level of significance using the given sample statistics. ​Claim: mu: 50​; alpha=0.03​; sigmaequals3.63. Sample​ statistics: x overbarequals48.7​, nequals69What are the critical values?
Test the claim about the population​ mean, μ​, at the given level of significance using the...
Test the claim about the population​ mean, μ​, at the given level of significance using the given sample statistics. ​Claim: μ =30​; α=0.05​; σ =3.16. Sample​ statistics: x bar =28.1​, n=59 Identify the null and alternative hypotheses. Calculate the standardized test statistic. Determine the critical​ value(s). Select the correct choice below and fill in the answer box to complete your choice. A. The critical values are plus or minus ? B. The critical value is ?
Test the claim about the population mean, muμ , at the given level of significance using...
Test the claim about the population mean, muμ , at the given level of significance using the given sample statistics. Claim: muμequals=4040 ; alphaαequals=0.060.06 ; sigmaσequals=3.873.87. Sample statistics: x overbarxequals=38.738.7 , nequals=7676 Identify the null and alternative hypotheses. Choose the correct answer below. A. Upper H 0H0 : muμequals=4040 Upper H Subscript aHa : muμgreater than>4040 B. Upper H 0H0 : muμgreater than>4040 Upper H Subscript aHa : muμequals=4040 C. Upper H 0H0 : muμequals=4040 Upper H Subscript aHa :...
Use a​ t-test to test the claim about the population mean μ at the given level...
Use a​ t-test to test the claim about the population mean μ at the given level of significance alphaα using the given sample statistics. Assume the population is normally distributed. ​Claim: μ= 51,800; alphaα= 0.05  Sample​ statistics: x overbar= 50,889​, s=2800​, n=18 What are the null and alternative​ hypotheses? Choose the correct answer below. A. H0​: μ= 51,800 Ha​: μ≠ 51,800 B. H0​:μ≤ 51,800 Ha​: μ> 51,800 C. H0​: μ ≥ 51,800 Ha​: μ < 51,800 D. H0​: μ ≠...
For a population with a mean equal to 150 and a standard deviation equal to 25,...
For a population with a mean equal to 150 and a standard deviation equal to 25, calculate the standard error of the mean for the following sample sizes. a) 20 b) 40 c) 60 a) The standard error of the mean for a sample size of 20 is .______ (Round to two decimal places as needed.) b) The standard error of the mean for a sample size of 40 is . ______(Round to two decimal places as needed.) c) The...
For a normal population with a mean equal to 87 and a standard deviation equal to...
For a normal population with a mean equal to 87 and a standard deviation equal to 15​, determine the probability of observing a sample mean of 94 or less from a sample of size 18?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT