Question

In: Statistics and Probability

9 For women aged 18-24, systolic blood pressures (in mm Hg) are normally distributed with a...

9 For women aged 18-24, systolic blood pressures (in mm Hg) are normally distributed with a mean of 114.8 and a standard deviation of 13.1 (based on data from the National Health Survey). If 10 women in that age bracket are randomly selected, find the probability that their mean systolic blood pressure is between 110 and 120.

Select one: a. 77.20% b. 86.00% c. 94.29% d. 81.33% e. None of other answers is neccessary true.

11 In a study of the length of time that students require to earn bachelor's degrees, 200 students are randomly selected and they are found to have a mean of 5.1 years and a standard deviation of 2.6 years. Construct a 99% confidence interval estimate of the population mean.

Select one:

a. (4.63, 5.57)

b. (4.74, 5.46)

c. (4.89, 5.31)

d. (4.91, 5.29)

e. None of other answer is necessary true.

Solutions

Expert Solution


Related Solutions

For women aged 18-24, systolic blood pressure (in mm Hg) are normally distributed with a mean...
For women aged 18-24, systolic blood pressure (in mm Hg) are normally distributed with a mean of 114.8 and a standard deviation of 13.1. a. What is the probability that a randomly selected woman in that age bracket has a blood pressure greater than 140? Round your answer to 4 decimal places. b. If 4 woman in that age bracket are randomly selected, what is the probability that their mean systolic blood pressure is greater than 140? Round to 7...
​​​​​​ 1. For women aged 18-24, systolic blood pressures are normally distributed with a mean of...
​​​​​​ 1. For women aged 18-24, systolic blood pressures are normally distributed with a mean of 114.8 mm Hg and a standard deviation of 13.1 mm Hg (based on data from the National Health Survey). Hypertension is commonly defined as a systolic blood pressure above 140 mm Hg. If a woman between the ages of 18 and 24 is randomly selected, find the probability that her systolic blood pressure is greater than 140. If 4 women in that age bracket...
For a woman age 18 to 24, systolic blood pressure’s (in mm of Hg) are normally...
For a woman age 18 to 24, systolic blood pressure’s (in mm of Hg) are normally distributed with a mean of 114.8 and a standard deviation of 13.1 (based on the data from the national health survey). A. If a woman between the ages of 18 and 24 is randomly selected, find the probability that her systolic blood pressure is above 120. B. If 30 women in that age bracket are randomly selected, find the probability that the main systolic...
The systolic blood pressures of the patients at a hospital are normally distributed with a mean...
The systolic blood pressures of the patients at a hospital are normally distributed with a mean of 136 mm Hg and a standard deviation of 13.8 mm Hg. Find the two blood pressures having these properties: the mean is midway between them and 90% of all blood pressures are between them. Need step by step on how to get answer
1. Blood Pressures. Among human females, systolic blood pressure (measured in mmHg) is normally distributed, with...
1. Blood Pressures. Among human females, systolic blood pressure (measured in mmHg) is normally distributed, with a mean of and a standard deviation of 06.3, μ = 1 .9. σ = 8 a. Connie’s blood pressure is 117.4 mmHg. Calculate the z-score for her blood pressure. b. Mark Connie’s x-value and z-score (as well as the mean) in the correct locations on the graph. c. Interpret the meaning of Connie’s z-score value. 2. Finding raw values from z-scores. California condors...
Assume that systolic blood pressure for adult women is normally distributed with a mean of 125.17...
Assume that systolic blood pressure for adult women is normally distributed with a mean of 125.17 with a variance of 107.0. An individual woman is selected from the population. Find the following probabilities. What is the probability that her systolic blood pressure is less than 125.17 What is the probability that her systolic blood pressure is between 112 and 140? What is the probability that her systolic blood pressure will be greater than 140? please use R and show me...
hw 9 # 15 Listed below are systolic blood pressure measurements​ (mm Hg) taken from the...
hw 9 # 15 Listed below are systolic blood pressure measurements​ (mm Hg) taken from the right and left arms of the same woman. Assume that the paired sample data is a simple random sample and that the differences have a distribution that is approximately normal. Use a 0.05 significance level to test for a difference between the measurements from the two arms. What can be​ concluded? Right arm 143 137 121 138 131 Left arm 171 174 191 149...
hw 9 # 15 Listed below are systolic blood pressure measurements​ (mm Hg) taken from the...
hw 9 # 15 Listed below are systolic blood pressure measurements​ (mm Hg) taken from the right and left arms of the same woman. Assume that the paired sample data is a simple random sample and that the differences have a distribution that is approximately normal. Use a 0.05 significance level to test for a difference between the measurements from the two arms. What can be​ concluded? Right arm 143 137 121 138 131 Left arm 171 174 191 149...
Suppose systolic blood pressure of 18-year-old females is approximately normally distributed with a mean of 123...
Suppose systolic blood pressure of 18-year-old females is approximately normally distributed with a mean of 123 mmHg and a variance of 615.04 mmHg. If a random sample of 18 girls were selected from the population, find the following probabilities: a) The mean systolic blood pressure will be below 109 mmHg. probability = b) The mean systolic blood pressure will be above 124 mmHg. probability = c) The mean systolic blood pressure will be between 106 and 125 mmHg. probability =...
The data below are ages and systolic blood pressures (measured in millimetres of mercury) of 9...
The data below are ages and systolic blood pressures (measured in millimetres of mercury) of 9 randomly selected adults. Age 38 41 45 48 50 53 57 61 65 Pressure 116 129 123 131 142 154 148 150 155 Find the equation of the regression line for the given data. Round the regression line values to the nearest hundredth. Determine the coefficient of determination. Round to the nearest thousandths. Interpret the coefficient of determination.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT