Question

In: Statistics and Probability

Independent simple random samples from two strains of mice used in an experiment yielded the following...

Independent simple random samples from two strains of mice used in an experiment yielded the following measurements on plasma glucose levels following a traumatic experience: Strain A: 54; 99; 105; 46; 70; 87; 55; 58; 139; 91 Strain B: 93; 91; 93; 150; 80; 104; 128; 83; 88; 95; 94; 97 Do these data provide sufficient evidence to indicate that the variance is larger in the population of strain A mice than in the population of strain B mice? Let a= 0.05. What assumptions are necessary?

Solutions

Expert Solution

An F-test assumes that data are normally distributed and that samples are independent from one another.

Dear student,
I am waiting for your feedback. I have given my 100% to solve your queries. If you satisfied with my answer then please please like this.
Thank You


Related Solutions

Assume that the two samples are independent simple random samples selected from normally distributed populations. Do...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Refer to the accompanying data set. Use a 0.01 significance level to test the claim that the sample of home voltages and the sample of generator voltages are from populations with the same mean. If there is a statistically significant difference, does that difference have practical significance? Day    Home (volts)   Generator (volts) 1   123.7  ...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Refer to the accompanying data set. Use a 0.05 significance level to test the claim that the sample of home voltages and the sample of generator voltages are from populations with the same mean. If there is a statistically significant​ difference, does that difference have practical​ significance? Day Home( volts) Generator( volts) Day Home (volts)...
Assume that two samples are independent simple random samples selected from normally distributed populations. Do not...
Assume that two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. A paint manufacturer wished to compare the drying times of two different types of paint. Independent simple random samples of 11 cans of type A and 14 cans of type B were selected and applied to similar surfaces. The​ drying​ times,​ in​ hours, were recorded. The summary statistics are below. Type​ A:   x1 = 75.7 hours​,...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Refer to the accompanying data set. Use a 0.01 significance level to test the claim that women and men have the same mean diastolic blood pressure. (a) calculate the test statistic t= (b) find p-vlaue p-value= (c) Make a conclusion about the null hypothesis and a final conclusion that addresses the original claim. (Reject/no reject)...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Refer to the accompanying data set. Use a 0.01 significance level to test the claim that women and men have the same mean diastolic blood pressure. Women   Men 71.0   70.0 94.0   64.0 79.0   67.0 65.0   60.0 73.0   63.0 79.0   71.0 58.0   58.0 51.0   40.0 71.0   67.0 87.0   66.0 67.0   82.0 60.0   74.0 73.0   55.0 61.0  ...
Assume that two samples are independent simple random samples selected from normally distributed populations. Do not...
Assume that two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. A paint manufacturer wished to compare the drying times of two different types of paint. Independent simple random samples of 11 cans of type A and 14 cans of type B were selected and applied to similar surfaces. The​ drying​ times,​ in​ hours, were recorded. The summary statistics are below. Type​ A:   x overbar 1 equals...
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​...
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​ t-test and the pooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. x1=12, s1=2.4, n1=19​, x2=13, s2=2.2​, n2=19 a.​ Two-tailed test, a=0.01 b. 99% confidence interval Part 1) First, what are the correct hypotheses for a​ two-tailed test? Part 2) ​Next, compute the test statistic. Part 3) Determine the​ P-value. Part 4) What is the conclusion of the...
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​...
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​ t-test and the pooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. x1=15​, s1=2.3​, n1=15​, x2=16​, s2=2.2​, n2=15 a.​ First, what are the correct hypotheses for a​ two-tailed test? compute the test statistic. Now determine the critical values. What is the conclusion of the hypothesis​ test? Since the test statistic ____ in the rejection​ region, ____ H0 b....
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​...
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​ t-test and the pooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. x1= 18, s1= 4, n1= 21, x2= 21, s2= 5, n2=13 a. What are the correct hypotheses for a​ left-tailed test? b. Compute the test statistic . c. Determine the​ P-value. d. The 90% confidence interval is from _____ to _______ ?
Given two independent random samples with the following results:
Given two independent random samples with the following results: n1=170x1=36    n2=123x2=65 Use this data to find the 90% confidence interval for the true difference between the population proportions.Step 1 of 4 : Find the values of the two sample proportions, pˆ1 and pˆ2. Round your answers to three decimal places.Step 2 of 4: Find the margin of error. Round your answer to six decimal places.Step 3 of 4: Construct the 90% confidence interval. Round your answers to three decimal places.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT