In: Statistics and Probability
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled t-test and the pooled t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval.
x1=15,
s1=2.3,
n1=15,
x2=16,
s2=2.2,
n2=15
a. First, what are the correct hypotheses for a two-tailed test?
compute the test statistic.
Now determine the critical values.
What is the conclusion of the hypothesis test?
Since the test statistic ____ in the rejection region, ____ H0
b. The 95% confidence interval is from?
a)
Ho :   µ1 - µ2 =   0
Ha :   µ1-µ2 ╪   0
Sample #1   ---->   1
mean of sample 1,    x̅1=   15.000
standard deviation of sample 1,   s1 =   
2.300
size of sample 1,    n1=   15
      
Sample #2   ---->   2
mean of sample 2,    x̅2=   16.000
standard deviation of sample 2,   s2 =   
2.200
size of sample 2,    n2=   15
      
difference in sample means = x̅1 - x̅2 =   
15-16=   -1.0000
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    2.2506
std error , SE =    Sp*√(1/n1+1/n2) =   
0.8218
t-statistic = ((x̅1-x̅2)-µd)/SE =   
(-1-0)/0.8218=   -1.2169
      
Level of Significance ,    α =    0.05
Degree of freedom, DF=   n1+n2-2 =    28
t-critical value , t* = ±   2.048  
(excel formula =t.inv(α/2,df)
Decision:   | t-stat | < | critical value |, so, Do
not Reject Ho  
Since the test statistic __do not fall__ in the rejection region, __fail to reject __ H0
b)
Degree of freedom, DF=   n1+n2-2 =   
28
t-critical value = t α/2 =    2.0484   (excel
formula =t.inv(α/2,df)
      
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    2.2506
std error , SE =    Sp*√(1/n1+1/n2) =   
0.8218
margin of error, E = t*SE =    2.048*0.8218=  
1.6834
      
difference in sample means = x̅1 - x̅2 =   
15-16=   -1.0000
confidence interval is   
   
Interval Lower Limit= (x̅1-x̅2) - E =   
-1-1.6834=   -2.6834
Interval Upper Limit= (x̅1-x̅2) + E =   
-1+1.6834=   0.6834