Question

In: Anatomy and Physiology

If the unknown sample was tested to have above normal levels of bilirubin (it tested to...

If the unknown sample was tested to have above normal levels of bilirubin (it tested to have high bilirubin levels), what other biochemistry tests should be performed? Justify your answers.

Solutions

Expert Solution

If bilirubin levels are high in a blood sample then the other tests that should be performed is CBC or specifically Haemoglobin levels to find the count of the red blood cells because excessive breakdown of RBC leads to excessive bilirubin levels.Also liver function tests must be performed to identify the functioning of the liver.Any diseases of liver also leads to such abnormal bilirubin levels in the blood.Excessive alcoholism ,viral hepatitis are also one of the causes for high bilirubin levels.CT Scan and MRI to detect gall stones and a liver biopsy to detect the tissues for any cancerous growth.


Related Solutions

For this question assume that we have a random sample from a normal distribution with unknown...
For this question assume that we have a random sample from a normal distribution with unknown mean but known variance. (a) Suppose that we have 36 observations, the sample mean is 5, and the population variance is 9. Construct a 95% confidence interval for the population mean. (b) Repeat the preceding with a population variance of 25 rather than 9. (c) Repeat the preceding with a sample size of 25 rather than 36. (d) Repeat the preceding but construct a...
The density of your unknown polymer was tested using H2O. If the density of your unknown...
The density of your unknown polymer was tested using H2O. If the density of your unknown was tested using ethanol instead of water, what would be the result?
The following numbers constitute a random sample from a normal distribution with an unknown mean and...
The following numbers constitute a random sample from a normal distribution with an unknown mean and unknown variance σ 2 1 : 15.0 19.1 16.6 20.4 13.5 (a) Test at the 5% significance level H0 : µ = 15 against Ha : µ > 15. Again, do the problem in two ways- first by obtaining the rejection region and second, by using the p-value. (b) Suppose we have another random sample from a normal distribution with an unknown mean and...
A sample of n = 15 observations is taken from a normal population with unknown mean...
A sample of n = 15 observations is taken from a normal population with unknown mean and variance. The sample has a mean of ¯x = 88.1 and standard deviation 14.29. The researcher hypothesizes that (a) the population has a mean of 90 and (b) the population has a variance of 300. Using confidence intervals, determine the validity of the researcher’s hypotheses at an overall confidence level of 95% assuming the two confidence intervals are independent. That is, recalling that...
Consider a normal population with an unknown population standard deviation. A random sample results in x−...
Consider a normal population with an unknown population standard deviation. A random sample results in x− = 47.50 and s2 = 27.04. a. Compute the 90% confidence interval for μ if x− and s2 were obtained from a sample of 15 observations. (Round intermediate calculations to at least 4 decimal places. Round "t" value to 3 decimal places and final answers to 2 decimal places.) b. Compute the 90% confidence interval for μ if x− and s2 were obtained from...
Let the following sample of 8 observations be drawn from a normal population with unknown mean...
Let the following sample of 8 observations be drawn from a normal population with unknown mean and standard deviation: 16, 26, 20, 14, 23, 10, 12, 29. A. Calculate the sample mean and the sample standard deviation. Sample mean: Sample standard deviation: B. Construct the 95% confidence interval for the population mean. Confidence interval ______ to ______ C. Construct the 99% confidence interval for the population mean. Confidence interval ______ to ______ D. What happens to the margin of error...
Let the following sample of 8 observations be drawn from a normal population with unknown mean...
Let the following sample of 8 observations be drawn from a normal population with unknown mean and standard deviation: 24, 23, 13, 22, 14, 17, 29, 19. a. Calculate the sample mean and the sample standard deviation. (Round intermediate calculations to at least 4 decimal places. Round "Sample mean" to 3 decimal places and "Sample standard deviation" to 2 decimal places.) b. Construct the 95% confidence interval for the population mean. (Round "t" value to 3 decimal places and final...
Consider a normal population with an unknown population standard deviation. A random sample results in x−...
Consider a normal population with an unknown population standard deviation. A random sample results in x− = 48.44 and s2 = 10.89. [You may find it useful to reference the t table.] a. Compute the 90% confidence interval for μ if x− and s2 were obtained from a sample of 7 observations. (Round intermediate calculations to at least 4 decimal places. Round "t" value to 3 decimal places and final answers to 2 decimal places.) b. Compute the 90% confidence...
An independent random sample is selected from an approximately normal population with an unknown standard deviation....
An independent random sample is selected from an approximately normal population with an unknown standard deviation. Find the p-value for the given set of hypotheses and T test statistic. Also determine if the null hypothesis would be rejected at alpha = 0.05. a. HA : mu > 0, n = 11, t = 1.91 b. HA: mu < 0, n = 17, t = -3.45
Consider a normal population with an unknown population standard deviation. A random sample results in x−...
Consider a normal population with an unknown population standard deviation. A random sample results in x− = 52.15 and s2 = 21.16. [You may find it useful to reference the t table.] a. Compute the 95% confidence interval for μ if x− and s2 were obtained from a sample of 19 observations. (Round intermediate calculations to at least 4 decimal places. Round "t" value to 3 decimal places and final answers to 2 decimal places.) b. Compute the 95% confidence...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT