Question

In: Statistics and Probability

Suppose X1; : : : ; Xn is i.i.d Exponential distribution with density f(xjθ) = (1/θ)...

Suppose X1; : : : ; Xn is i.i.d Exponential distribution with density
f(xjθ) = (1/θ) * e(-x/θ); 0 ≤ x < 1; θ > 0:
(a) Find the UMVUE (the best unbiased estimator) of θ.
(b) What is the Cramer-Rao lower bound of all unbiased estimator of all unbiased estimator
of θ. Does the estimator from (a) attain the lower bound? Justify your answer.
(c) What is the Cramer-Rao lower bound of all unbiased estimator of θ^2?
3
(d) Find the UMVUE of θ2. Does this estimator attain the lower bound in (c)?

Solutions

Expert Solution


Related Solutions

Suppose X1, ..., Xn are i.i.d. from an exponential distribution with mean θ. If we are...
Suppose X1, ..., Xn are i.i.d. from an exponential distribution with mean θ. If we are testing H0 : θ = θ0 vs Ha : θ > θ0. Suppose we reject H0 when ( X¯n/ θ0) > 1 + (1.645/ √n) (a) (10 points) Calculate the power function G(ζ). You may leave your answer in terms of the standard normal cdf Φ(x). (b) (5 points) Is this test consistent?
Let X1. . . . Xn be i.i.d f(x; θ) = θ(1 − θ)^x x =...
Let X1. . . . Xn be i.i.d f(x; θ) = θ(1 − θ)^x x = 0.. Is there a function of θ for which there exists an unbiased estimator of θ whose variance achieves the CRLB? If so, find it
Let X1, ..., Xn be i.i.d random variables with the density function f(x|θ) = e^(θ−x) ,...
Let X1, ..., Xn be i.i.d random variables with the density function f(x|θ) = e^(θ−x) , θ ≤ x. a. Find the Method of Moment estimate of θ b. The MLE of θ (Hint: Think carefully before taking derivative, do we have to take derivative?)
Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 =...
Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 = X¯ − 1 2 and ˆθ2 = X(n) − n n + 1 are both consistent estimators for θ.
For a fixed θ>0, let X1,X2,…,Xn be i.i.d., each with the beta (1,θ) density. i) Find...
For a fixed θ>0, let X1,X2,…,Xn be i.i.d., each with the beta (1,θ) density. i) Find θ^ that is the maximum likelihood estimate of θ. ii) Let X have the beta (1,θ) density. Find the density of −log⁡(1−X). Recognize this as one of the famous ones and provide its name and parameters. iii) Find f that is the density of the MLE θ^ in part (i).
Suppose that X1,. . . , Xn is an m.a. of a distribution U (0, θ]....
Suppose that X1,. . . , Xn is an m.a. of a distribution U (0, θ]. (a) Find the most powerful test of size α to test H0: θ = θ0 vs Ha: θ = θa, where θa <θ0. (b) Is the test obtained in part (a) the UMP (α) to test H0: θ = θ0 vs Ha: θ <θ0 ?. (c) Find the most powerful test of size α to test H0: θ = θ0 vs Ha: θ =...
Let X1,...,Xn be i.i.d. N(θ,1), where θ ∈ R is the unknown parameter. (a) Find an...
Let X1,...,Xn be i.i.d. N(θ,1), where θ ∈ R is the unknown parameter. (a) Find an unbiased estimator of θ^2 based on (Xn)^2. (b) Calculate it’s variance and compare it with the Cram ́er-Rao lower bound.
Suppose that (X1, · · · , Xn) is a sample from the normal distribution N(θ,...
Suppose that (X1, · · · , Xn) is a sample from the normal distribution N(θ, θ^2 ) with θ ∈ R. Find an MLE of θ.
Let X1, X2, · · · , Xn be iid samples from density: f(x) = {θx^(θ−1),...
Let X1, X2, · · · , Xn be iid samples from density: f(x) = {θx^(θ−1), if 0 ≤ x ≤ 1} 0 otherwise Find the maximum likelihood estimate for θ. Explain, using Strong Law of Large Numbers, that this maximum likelihood estimate is consistent.
Let X1, . . . , Xn be i.i.d. samples from Uniform(0, θ). Show that for...
Let X1, . . . , Xn be i.i.d. samples from Uniform(0, θ). Show that for any α ∈ (0, 1), there is a cn,α, such that [max(X1,...,Xn),cn,α max(X1,...,Xn)] is a 1−α confidence interval of θ.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT