In: Statistics and Probability
A data set is given
a)
(a) Draw a scatter diagram. Comment on the type of relation that appears to exist between x and y.
(b) Given that
x overbarxequals=3.83333.8333,
s Subscript xsxequals=2.40142.4014,
y overbaryequals=3.98333.9833,
s Subscript ysyequals=1.74521.7452,
and
requals=negative 0.9457−0.9457,
determine the least-squares regression line.
(c) Graph the least-squares regression line on the scatter diagram drawn in part (a).
x | 0 | 2 | 4 | 5 | 6 | 6 |
y | 6.0 | 5.8 | 4.7 | 3.0 | 2.1 | 2.3 |
(a) SCATTER DIAGRAM
Line of Regression Y on X i.e Y = bo + b1 X | ||||
X | Y | (Xi - Mean)^2 | (Yi - Mean)^2 | (Xi-Mean)*(Yi-Mean) |
0 | 6 | 14.694 | 4.067 | -7.731 |
2 | 5.8 | 3.361 | 3.3 | -3.331 |
4 | 4.7 | 0.028 | 0.514 | 0.119 |
5 | 3 | 1.361 | 0.967 | -1.147 |
6 | 2.1 | 4.695 | 3.547 | -4.081 |
6 | 2.3 | 4.695 | 2.833 | -3.647 |
calculation procedure for regression
mean of X = sum ( X / n ) = 3.8333
mean of Y = sum ( Y / n ) = 3.9833
sum ( (Xi - Mean)^2 ) = 28.834
sum ( (Yi - Mean)^2 ) = 15.23
sum ( (Xi-Mean)*(Yi-Mean) ) = -19.818
b1 = sum ( (Xi-Mean)*(Yi-Mean) ) / sum ( (Xi - Mean)^2 )
= -19.818 / 28.834
= -0.687
bo = sum ( Y / n ) - b1 * sum ( X / n )
bo = 3.9833 - -0.687*3.8333 = 6.618
value of regression equation is, Y = bo + b1 X
least-squares regression line = Y'=6.618-0.687* X
(c) Regression line on the graph