In: Statistics and Probability
Two fair dice are tossed together. Let X be the sum and Y the product of the two numbers on the top of the dice. Calculate E(X+ 3Y).
If two dice are tossed the possible outcomes are 1,2,3,4,5,6 on each die. To obtain sum and product.
Dice 1 | Dice 2 | X (sum ) | Y (product) |
1 | 1 | 2 | 1 |
1 | 2 | 3 | 2 |
1 | 3 | 4 | 3 |
1 | 4 | 5 | 4 |
1 | 5 | 6 | 5 |
1 | 6 | 7 | 6 |
2 | 1 | 3 | 2 |
2 | 2 | 4 | 4 |
2 | 3 | 5 | 6 |
2 | 4 | 6 | 8 |
2 | 5 | 7 | 10 |
2 | 6 | 8 | 12 |
3 | 1 | 4 | 3 |
3 | 2 | 5 | 6 |
3 | 3 | 6 | 9 |
3 | 4 | 7 | 12 |
3 | 5 | 8 | 15 |
3 | 6 | 9 | 18 |
4 | 1 | 5 | 4 |
4 | 2 | 6 | 8 |
4 | 3 | 7 | 12 |
4 | 4 | 8 | 16 |
4 | 5 | 9 | 20 |
4 | 6 | 10 | 24 |
5 | 1 | 6 | 5 |
5 | 2 | 7 | 10 |
5 | 3 | 8 | 15 |
5 | 4 | 9 | 20 |
5 | 5 | 10 | 25 |
5 | 6 | 11 | 30 |
6 | 1 | 7 | 6 |
6 | 2 | 8 | 12 |
6 | 3 | 9 | 18 |
6 | 4 | 10 | 24 |
6 | 5 | 11 | 30 |
6 | 6 | 12 | 36 |
table for X
X value (x) | Frequency (f) | x*f |
2 | 1 | 2 |
3 | 2 | 6 |
4 | 3 | 12 |
5 | 4 | 20 |
6 | 5 | 30 |
7 | 6 | 42 |
8 | 5 | 40 |
9 | 4 | 36 |
10 | 3 | 30 |
11 | 2 | 22 |
12 | 1 | 12 |
Total | 36 | 252 |
E(x) = sum(f*x)/sum(f) = 252/36 = 7
table for Y
Y value (y) | Frequency (f) | f*y |
1 | 1 | 1 |
2 | 2 | 4 |
3 | 2 | 6 |
4 | 3 | 12 |
5 | 2 | 10 |
6 | 4 | 24 |
8 | 2 | 16 |
9 | 1 | 9 |
10 | 2 | 20 |
12 | 4 | 48 |
15 | 2 | 30 |
16 | 1 | 16 |
18 | 2 | 36 |
20 | 2 | 40 |
24 | 2 | 48 |
25 | 1 | 25 |
30 | 2 | 60 |
36 | 1 | 36 |
Total | 36 | 441 |
E(y) = sum(f*y)/sum(f) = 441/36 = 12.25
E(X+ 3Y) = E(X) + 3*E(Y) = 7 + 12.25*3 = 7 + 36.75 = 43.75