Question

In: Statistics and Probability

A roulette wheel has 38 slots: 18 red, 18 black, and 2 green. A ball is...

A roulette wheel has 38 slots: 18 red, 18 black, and 2 green. A ball is tossed into the wheel and eventually settles in a slot at random. You play many games, betting $1 on red each time. If the ball lands in a red slot you win $1, otherwise you lose the dollar you bet. After n games, what is the probability that you have more money than you started with? Give (approximate) numerical answers for n = 100 and n = 1000. How would the answer change if there were no green slots?

Solutions

Expert Solution

Expected winnings from one game = $1*18/38 - $1*20/38

= $-1/19

Variance of winnings from one game =

=

For n = 100 and n = 1000, the expected winnings will follow Normal distribution (From Central Limit Theorem)

For n = 100, expected winnings = 100*$-1/19 = $-100/19

Variance of winnings = 360/361*100

Thus, standard deviation of winnings = $9.986

The probability that you have more money than you started with = P(winnings > 0)

Using correction of continuity, the required probability = P(winnings > 0.5)

= P[Z > {0.5 - (-100/19)}/9.986]

= P(Z > 1.03) = 0.1515

For n = 1000,

Mean = $-1000/19, Standard deviation = $31.58

The required probability = P(Z > 1.68) = 0.0465

If there were no green slots, expected winnings from one game = $1*18/36 - $1*18/36 = 0

Variance of winning = 1

In this case, probability that you have more money than you started with

For n = 100 is P{Z > 0.5/10} = P(Z > 0.05) = 0.4801

For n = 1000 is P{Z > 0.5/√1000} = P(Z > 0.0158)

= 0.4937


Related Solutions

A roulette wheel has 38 slots, 18 of which are black, 18 red, and 2 green....
A roulette wheel has 38 slots, 18 of which are black, 18 red, and 2 green. When the wheel is spun, the ball is equally likely to land in any of the 38 slots. Gamblers can place a number of different bets in roulette. One of the simplest wagers chooses red or black. A bet of $1 on red will pay off an additional dollar if the ball lands in a red slot. Otherwise, the player loses the original dollar....
The roulette wheel has 38 slots. Two of the slots are green, 18 are red, and...
The roulette wheel has 38 slots. Two of the slots are green, 18 are red, and 18 are black. A ball lands at random in one of the slots. A casino offers the following game. Pay $1 to enter the game. If the ball falls on black, you don’t get anything, if the ball falls on green, you get a dollar, if the ball falls on red, you get $1.95. Bob plays this game 100 times, and of course, the...
The game of roulette involves spinning a wheel with 38 slots: 18 red, 18 black, and...
The game of roulette involves spinning a wheel with 38 slots: 18 red, 18 black, and 2 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has an equal chance of capturing the ball. (a) You watch a roulette wheel spin 4 consecutive times and the ball lands on a black slot each time. What is the probability that the ball will land on a block slot on the next spin?...
Task 1: Roulette wheel simulation A roulette wheel has 38 slots of which 18 are red,...
Task 1: Roulette wheel simulation A roulette wheel has 38 slots of which 18 are red, 18 are black, and 2 are green. If a ball spun on to the wheel stops on the color a player bets, the player wins. Consider a player betting on red. Winning streaks follow a Geometric(p = 20/38) distribution in which we look for the number of red spins in a row until the first black or green. Use the derivation of the Geometric...
2. (Binomial model) Consider a roulette wheel with 38 slots, of which 18 are red, 18...
2. (Binomial model) Consider a roulette wheel with 38 slots, of which 18 are red, 18 are black, and 2 are green (0 and 00). You spin the wheel 6 times. (a) What is the probability that 2 of those times the ball ends up in a green slot? ( b) What is the probability that 4 of those times the ball ends up in a red slot? 3. (Normal approximation to binomial model) Take the roulette wheel from question...
The American roulette wheel has 38 total slots of which 18 are colored red, 18 are...
The American roulette wheel has 38 total slots of which 18 are colored red, 18 are colored black, and 2 are colored green. The red and the black slots are numbered 1 through 36. The green slots are numbered 0 and 00. Construct the probability distribution for betting $1 on the second dozen numbers, 13 through 24, (which pays 2 to 1) in the game of roulette and calculate the corresponding mean and standard deviation.
A roulette wheel is divided into 38 labeled pockets, 18 of which are red, 18 are...
A roulette wheel is divided into 38 labeled pockets, 18 of which are red, 18 are black, and 2 are green. Each round, you can place a $1 bet on one specific red or black pocket with odds of 35 : 1. That is, if you are correct you receive $35 in addition to the dollar you bet, and if you are incorrect, you get nothing. Your friend has developed what he describes as a “foolproof system” for winning. It...
A roulette wheel has 38 slots, numbered 0, 00, and 1 to 36. The slots 0...
A roulette wheel has 38 slots, numbered 0, 00, and 1 to 36. The slots 0 and 00 are colored green, 18 of the others are red, and 18 are black.The dealer spins the wheel and at the same time rolls a small ball along the wheel in the opposite direction. The wheel is carefully balanced so that the ball is equally likely to land in any slot when the wheel slows. Gamblers can bet on various combinations of numbers...
In the game of​ roulette, a wheel consists of 38 slots numbered​ 0, 00,​ 1, 2,...,...
In the game of​ roulette, a wheel consists of 38 slots numbered​ 0, 00,​ 1, 2,..., 36. To play the​ game, a metal ball is spun around the wheel and is allowed to fall into one of the numbered slots. If the number of the slot the ball falls into matches the number you​ selected, you win​ $35; otherwise you lose​ $1. Complete parts ​(a) through ​(g) below (a) Construct a probability distribution for the random variable​ X, the winnings...
In the game of roulette, there is a wheel with 37 slots numbered with the integers...
In the game of roulette, there is a wheel with 37 slots numbered with the integers from 0 to 36, inclusive. A player bets $3 and chooses a number. The wheel is spun and a ball rolls on the wheel. If the ball lands in the slot showing the chosen number, the player receives $3 plus 100$. Otherwise, the player loses the $3 bet. Assume that all numbers are equally likely. Determine the variance of the gain or loss per...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT