In: Statistics and Probability
The data in the table is the number of absences for 77 students and their corresponding grade.
Number of Absences | 33 | 55 | 66 | 66 | 66 | 77 | 88 |
---|---|---|---|---|---|---|---|
Grade | 3.93.9 | 3.83.8 | 2.92.9 | 2.72.7 | 2.42.4 | 2.32.3 | 1.91.9 |
Step 1 of 5 : Calculate the sum of squared errors (SSE). Use the values b0=5.4276b0=5.4276 and b1=−0.4413b1=−0.4413 for the calculations. Round your answer to three decimal places.
step2: Calculate the estimated variance of errors, se2. Round your answer to three decimal places.
step3 : Calculate the estimated variance of slope, sb12. Round your answer to three decimal places.
step 4: Construct the 90%confidence interval for the slope. Round your answers to three decimal places.
step 5: Construct the 80% confidence interval for the slope. Round your answers to three decimal places.
step 1)
x | y | (x-x̅)² | Ŷ=5.4276-0.4413 *x | residual,ei=y-yhat | (Y-Ŷ)² | ||
3 | 3.9 | 8.16 | 4.104 | -0.204 | 0.04 | ||
5 | 3.8 | 0.73 | 3.221 | 0.579 | 0.34 | ||
6 | 2.9 | 0.02 | 2.780 | 0.120 | 0.01 | ||
6 | 2.7 | 0.02 | 2.780 | -0.080 | 0.01 | ||
6 | 2.4 | 0.02 | 2.780 | -0.380 | 0.14 | ||
7 | 2.3 | 1.31 | 2.338 | -0.038 | 0.00 | ||
8 | 1.9 | 4.59 | 1.897 | 0.003 | 0.000 |
SSE= Σ(Y-Ŷ)² = 0.543
-------------
2)
estimate of variance, Se² = SSE/(n-2) =
0.109
---------------
3)
estimated varince of slope , Se²(ß1) = Se²/Sxx = =0.109/14.857 = 0.0073
------------------
4)
confidence interval for slope
α= 0.1
t critical value= t α/2 =
2.015 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
0.32960 /√ 14.86 =
0.086
margin of error ,E= t*std error = 2.015
* 0.086 = 0.172
estimated slope , ß^ = -0.4413
lower confidence limit = estimated slope - margin of error
= -0.4413 - 0.172
= -0.614
upper confidence limit=estimated slope + margin of error
= -0.4413 + 0.172
= -0.269
---------------------
5)
confidence interval for slope
α= 0.2
t critical value= t α/2 =
1.476 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
0.32960 /√ 14.86 =
0.086
margin of error ,E= t*std error = 1.476
* 0.086 = 0.126
estimated slope , ß^ = -0.4413
lower confidence limit = estimated slope - margin of error
= -0.4413 - 0.126
= -0.568
upper confidence limit=estimated slope + margin of error
= -0.4413 + 0.126
= -0.315