Question

In: Statistics and Probability

A genetic experiment involving peas yielded one sample of offspring consisting of 409 green peas and 140 yellow peas.

A genetic experiment involving peas yielded one sample of offspring consisting of 409 green peas and 140 yellow peas. Use a 0.05 significance level to test the claim that under the same circumstances, 23% of offspring peas will be yellow. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. Use the P-value method and the normal distribution as an approximation to the binomial distribution

What are the null and alternative hypothesis?   

What is the test statistic?   

What is the P-value?   

What is the conclusion about the null hypothesis?   

What is the final conclusion?


Solutions

Expert Solution

This is the two tailed test .

The null and alternative hypothesis is

H0 : p =0.23

Ha : p 0.23

n = 409 green peas + 140 yellow peas =549 total peas

x = 140 yellow peas

= x / n = 140 / 549 =0.25

P0 = 0.23

1 - P0 = 1 - 23 =0.77

Test statistic = z

= - P0 / [P0 * (1 - P0 ) / n]

= 0.25 -0.23/ [(0.23*0.77) / 549]

= 1.11

Test statistic = z =1.11

P(z >1.11 ) = 1 - P(z < 1.11) = 0.8588

P-value = 2*0.1412 =0.2824

= 0.05

P-value >

0.2824 > 0.05

Do not reject the null hypothesis .

There is insufficient evidence to suggest that


Related Solutions

A genetic experiment involving peas yielded one sample of offspring consisting of 418 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 418 green peas and 158 yellow peas. Use a 0.05 significance level to test the claim that under the same circumstances, 26 % of offspring peas will be yellow. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. Use the P-value method and the normal distribution as an approximation to the binomial distribution. What are...
A genetic experiment involving peas yielded one sample of offspring consisting of 448 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 448 green peas and 127 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 27% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
A genetic experiment involving peas yielded one sample of offspring consisting of 404404 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 404404 green peas and 158158 yellow peas. Use a 0.050.05 significance level to test the claim that under the same? circumstances, 2424?% of offspring peas will be yellow. Identify the null? hypothesis, alternative? hypothesis, test? statistic, P-value, conclusion about the null? hypothesis, and final conclusion that addresses the original claim. Use the? P-value method and the normal distribution as an approximation to the binomial distribution. ?P-valueequals= Round 4...
A genetic experiment involving peas yielded one sample of offspring consisting of 411 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 411 green peas and 172 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 25​% of offspring peas will be yellow. Identify the test​ statistic, P-value. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. I con not get the P-value or the test statistic correct.
A genetic experiment involving peas yielded one sample of offspring consisting of 428 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 428 green peas and 136 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 24​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the...
A genetic experiment involving peas yielded one sample of offspring consisting of 412 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 412 green peas and 151 yellow peas. Use a 0.01 significance level to test the claim that under the same​circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What is the test...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and 120 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the...
A genetic experiment involving peas yielded one sample of offspring consisting of 432 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 432 green peas and 121 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and 134 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 24% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
A genetic experiment involving peas yielded one sample of offspring consisting of 443 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 443 green peas and 120 yellow peas. Use a 0.05 significance level to test the claim that under the same​circumstances, 26​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What are the null...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT