Question

In: Statistics and Probability

The fuel efficiency, measured in miles per gallon, was measured for each of 12 cars when...

The fuel efficiency, measured in miles per gallon, was measured for each of 12 cars when the cars where brand new. After exactly 5 years of use, the fuel efficiency of the same 12 cars was measured again. The data is in the following table. Mileage when New Mileage after 5 years Difference 16 15 1 27 24 3 17 17 0 33 29 4 28 25 3 24 22 2 18 16 2 22 20 2 20 21 -1 22 20 2 29 22 7 21 22 -1 a). Construct a 99% CI for the mean difference between initial fuel efficiency and the fuel efficiency after 5 years. b). Do the data give an evidence that there is no difference in fuel efficiency.

Solutions

Expert Solution

Part a

Confidence interval for difference between two population means of paired samples is given as below:

Confidence interval = Dbar ± t*SD/sqrt(n)

From given data, we have

Dbar = 2

Sd = 2.215646838

n = 12

df = n – 1 = 11

Confidence level = 99%

Critical t value = 3.1058

(by using t-table)

Confidence interval = Dbar ± t*SD/sqrt(n)

Confidence interval = 2 ± 3.1058*2.215646838/sqrt(12)

Confidence interval = 2 ± 1.9865

Lower limit = 2 - 1.9865 = 0.0135

Upper limit = 2 + 1.9865 = 3.9865

0.0135 < µd < 3.9865

Part b

Do the data give evidence that there is no difference in fuel efficiency?

Data do not give evidence that there is no difference in fuel efficiency because the above confidence interval does not contain the value zero.


Related Solutions

The fuel consumption, in miles per gallon, of all cars of a particular model has a...
The fuel consumption, in miles per gallon, of all cars of a particular model has a mean of 25 and a standard deviation of 2. The population distribution can be assumed as normal. A random sample of these cars is taken. a. Find the probability that the sample mean fuel consumption will be fewer than 24 miles per gallon if (i) a sample of 1 observation is taken, (ii) a sample of 4 observations if taken and (iii) a sample...
Two types of engines are tested for fuel efficiency based on miles per gallon. A sample...
Two types of engines are tested for fuel efficiency based on miles per gallon. A sample of 31 cars were tested with Brand X and the mean was 20.9 mpg with a standard deviation of 1.8 mpg. 31 cars tested with Brand Y had a mean of 17.6 mpg and a standard deviation of 1.2 mpg. Test the claim that Brand X is more efficient than Brand Y. Use a 0.05 significance level. Using the data from Problem #1, calculate...
Fuel consumption is commonly measured in miles per gallon​ (mi/gal). An agency designed new fuel consumption...
Fuel consumption is commonly measured in miles per gallon​ (mi/gal). An agency designed new fuel consumption tests to be used starting with 2008 car models. Listed below are randomly selected amounts by which the measured MPG ratings decreased because of the new 2008 standards. Find the​ range, variance, and standard deviation for the sample data. Is the decrease of 4​ mi/gal unusual? Why or why​ not? 22     11     33     22     44     11     33     22     22     22     22     22     11     22    ...
5. Suppose that a car manufacturer claims that its fuel efficiency (as measured in miles per...
5. Suppose that a car manufacturer claims that its fuel efficiency (as measured in miles per gallon) per tankful of gasoline follows a normal distribution with mean 35 mpg and standard deviation 2.0 mpg. a) What percentage of tankfuls would obtain between 30 and 40 mpg? (A table of standard normal probabilities appears at the end of this exam.) b) Would the percentage of tankfuls that obtain between 30 and 40 mpg be larger, smaller, or the same if the...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 41.4 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.7 34.0 34.7 35.4 36.0 36.2 37.3 37.6 37.7 37.9 38.1 38.5 38.6 39.0 39.2 39.4 39.9 40.7 41.4 41.8...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 36.3 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? LOADING... Click the icon to view the data 32.5 35.9 38.0 38.6 39.9 42.4 34.4 36.3 38.1 38.7 40.6 42.7...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 38.4 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.5; 35.9; 37.6; 38.6; 40.4; 42.5; 34.0; 36.2; 37.8; 38.9; 40.6; 42.6; 34.7; 37.3; 38.1; 39.4 ;41.3; 43.4; 35.6; 37.4;...
the accompanying data represent the miles per gallon of a random sample of cars with a​...
the accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) compute the​ z-score corresponding to the individual who obtained 38.7 miles per gallon. interpret this result. ​(b) determine the quartiles. ​(c) compute and interpret the interquartile​ range, iqr. ​(d) determine the lower and upper fences. are there any​ outliers?39.939.9 42.442.4 34.634.6 36.336.3 38.138.1 38.938.9 40.540.5 42.842.8 34.734.7 37.537.5 38.338.3 39.439.4 41.441.4 43.643.6 35.235.2 37.637.6 38.538.5 39.739.7 41.641.6 49.049.0
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 39.839.8 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.4 34.1 34.5 35.7 36.1 36.3 37.5 37.7 37.9 38.1 38.3 38.5 38.7 39.1 39.5 39.8 39.9 40.6 41.3 41.6...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 32.7 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.7 35.9 38.0 38.7 40.2 42.2 34.4 36.2 38.1 38.9 40.7 42.7 34.6 37.5 38.2 39.5 41.5 43.6 35.2 37.8...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT