Question

In: Statistics and Probability

As a binomial question: Flip a coin twice. The probability of observing a head is 50%,...

As a binomial question: Flip a coin twice. The probability of observing a head is 50%, what is the probability that I observe 1 head? binompdf (n, p, x) so binompdf( 2, .50,1) Sampling Proportion question (8.2): There is a 50% of observing a head. If we flip the coin 100 times, what is that at most 30% of the flips will be heads? n*p*(1-p) =100*.50*.50=25 (Do not use my coin example. Use your own scenario). pˆ=.30 po or μ=50 Image result for sample proportion z formula NormalCDF (-999,.30,.50,.05) raw numbers z=.30−.50.50(1−.50)100√=−.20.05=−4 NormalCDF(-999,-4) standardized that means the mean is 0 and standard deviation is 1.

I need a similar example of this question?

Solutions

Expert Solution

As a binomial question: Flip a coin twice. The probability of observing a head is 50%, what is the probability that I observe 1 head? binompdf (n, p, x) so binompdf( 2, .50,1)

Here X = number of heads. So X takes three values as 0, 1, 2

So that n = 2, p = 0.5, x = 1

Let's use TI-84 Plus calculator:

Click on 2ND >>> VARS >>>DISTR >>> A: binompdf( >>> ENTER

trials : 2

p: 0.5

x value : 1

Paste.

So we get the following output:

0.5

So answer is 0.5

Let X = number of boys in two births

So X takes the values as 0, 1 , 2

Similarly, we want to find the probability of proportion of boys is at most 0.3 in the 100 new birth.

So you can use above command to find this type of example;

Note that : Here we assume that the the chance of gender as girl or boys of a new born baby is same as 0.5.


Related Solutions

what is the probablity you flip a coin and get a head, flip another coin and...
what is the probablity you flip a coin and get a head, flip another coin and get a tail and then draw a blavk card from a deck of cards?
Choose a binomial probability experiment. You could flip a coin, or toss a basketball from the...
Choose a binomial probability experiment. You could flip a coin, or toss a basketball from the free throw line and see if you make the shot or miss, or choose another experiment where the outcome is a success or failure (only two possible outcomes.)   1) Make a guess about the probability of success before doing the experiment. 2) Repeat the experiment 50 times, and record the results. 3) Calculate the empirical probability of success, and compare it to your original...
Choose a binomial probability experiment. You could flip a coin, or toss a basketball from the...
Choose a binomial probability experiment. You could flip a coin, or toss a basketball from the free throw line and see if you make the shot or miss, or choose another experiment where the outcome is a success or failure (only two possible outcomes.) 1) Make a guess about the probability of success before doing the experiment. 2) Repeat the experiment 50 times, and record the results. 3) Calculate the empirical probability of success, and compare it to your original...
1. A) If you flip an unfair coin 100 times, and the probability for a coin...
1. A) If you flip an unfair coin 100 times, and the probability for a coin to be heads is 0.4, then the number of heads you expect on average is: B) If you flip an unfair coin 100 times, and the probability for a coin to be heads is 0.4, then the standard deviation for the number of heads is: C) If you flip an unfair coin 2 times, and the probability for a coin to be heads is...
An experiment is to flip a coin until a head appears for the first time. Assume...
An experiment is to flip a coin until a head appears for the first time. Assume the coin may be biased, i.e., assume that the probability the coin turns up heads on a flip is a constant p (0 < p < 1). Let X be the random variable that counts the number of flips needed to see the first head. (a) Let k ≥ 1 be an integer. Compute the probability mass function (pmf) p(k) = P(X = k)....
I flip a fair coin and recorded the result. If it is head, I then roll...
I flip a fair coin and recorded the result. If it is head, I then roll a 6-sided die: otherwise, I roll a 4-sided die and record the results. Let event A be the die has a 3 or greater. let event B be I flip tails. (a)-List all the outcomes in the Sample space (b)- List the outcomes in Event A and B (c)- List the outcomes in A or not B (d)- Calculate the probability of event A...
1. A fair coin is tossed twice. Consider the following events: a) A = a head...
1. A fair coin is tossed twice. Consider the following events: a) A = a head on the first toss; b) B = a tail on the first toss; c) C = a tail on the second toss; d) D = a head on the second toss. Are events A and B mutually exclusive ? WHY or WHY NOT ? Are events C and D Independent ? WHY or WHY NOT ? 2. Suppose there are 3 similar boxes. Box...
If you flip a fair coin, the probability that the result is heads will be 0.50....
If you flip a fair coin, the probability that the result is heads will be 0.50. A given coin is tested for fairness using a hypothesis test of H0:p=0.50 versus HA:p≠0.50. The given coin is flipped 180 times, and comes up heads 110 times. Assume this can be treated as a Simple Random Sample. The test statistic for this sample z and the p value
Suppose that we flip a fair coin until either it comes up tails twice or we...
Suppose that we flip a fair coin until either it comes up tails twice or we have flipped it six times. What is the expected number of times we flip the coin?
We toss a fair 6 sided die and flip a fair coin twice. Define the random...
We toss a fair 6 sided die and flip a fair coin twice. Define the random variable Y1 to be the number of sports atop the die. Define Y2 to be the total number of heads obtained on the two flips of the coin. a) Find the mean value and standard deviation of Y1. b) Find the mean value and standard deviation of Y2. c) Find the mean value and standard deviation of Y1+Y2. d) What are the mean value...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT