Question

In: Physics

A heat conducting rod, 1.60 m long, is made of an aluminum section, .9 m long,...

A heat conducting rod, 1.60 m long, is made of an aluminum section, .9 m long, and a copper section, .7 m long. both sections have a cross-sectional area of .0004 m2. the aluminum end and the copper end are maintained at temperatures of 30 degrees celcius and 170 degrees celcius, respectively. the thermal conductivity of aluminum and copper are 205 and 385 W/m*K, respectively. the rate at which heat is conducted in the rod is closest to:

11W

12W

9W

7.9W

10W

Please show the steps how to get to the answer. i really want to learn this.

Solutions

Expert Solution


I have solved this question earlier with different figures. Please workout using yours figures. If you need any further help just PM me. If I have helped you please rate me 5 stars first (before you rate anyone else)

A heat conducting rod, 0.90 m long, is made of an aluminum section, 0.20 m long, and a copper section, 0.70 m long. Both sections have a cross-sectional area of 0.0004 m^2. The aluminum end and the copper end are maintained at temperatures of 30*C and 230*C respectively. The thermal conductivities of aluminum and copper are 205 and 385 W/m ? K, respectively. The temperature of the aluminum-copper junction in the rod, in *C, is closest to:

resistance of each rod is given by

R = L / kA

so

aluminum: R = 0.20 / 205 * 0.0004 = 2.439

copper: R = 0.70 / 385 * 0.0004 = 4.545

total resistance = 2.439 + 4.545 = 6.9845

total rate of heat flow = total temp diff / total resistance = 200 / 6.9845 = 28.635 Watts

temp diff across aluminum = heat flow * resistance = 28.635 * 2.439 = 69.84 deg C

Since one end of the aluminum is at 30 deg C, the other end is

30 + 69.84 = 99.84 = 100 deg C is the temp at the junction


Related Solutions

An aluminum rod with a square cross section is 1.2 m long and 5.0 mm on...
An aluminum rod with a square cross section is 1.2 m long and 5.0 mm on edge. (a) What is the resistance between its ends? (b) What must be the diameter of a cylindrical copper rod of length 1.2 m if its resistance is to be the same as that of the aluminum rod? The resistivity of aluminum is 2.75 × 10-8 Ω·m and the resistivity of copper is 1.69 × 10-8 Ω·m.
A steel rod 0.450 m long and an aluminum rod 0.250 m long, both with the...
A steel rod 0.450 m long and an aluminum rod 0.250 m long, both with the same diameter, are placed end to end between rigid supports with no initial stress in the rods. The temperature of the rods is now raised by 60.0 ∘C. What is the stress in each rod? (Hint: The length of the combined rod remains the same, but the lengths of the individual rods do not.) Psteel,Paluminium = ?
An infinitely long, solid non-conducting rod (cylinder) with circular cross section of radius a has its...
An infinitely long, solid non-conducting rod (cylinder) with circular cross section of radius a has its axis along the z-axis. It has a non-uniform volume charge density given in cylindrical coordinates by ρ(s) = C (s/a)^2 ,where C is a positive constant. In addition, there is a uniform volume charge density −σ on the outer cylindrical shell of radius b, where σ is a positive constant. Region 2 is a vacuum. For parts (a) through (c), use Gauss’ Law and...
A 50 cm long rod is half aluminum and half copper. The aluminum end is in...
A 50 cm long rod is half aluminum and half copper. The aluminum end is in boiling water. The end of an aluminum rod (50 cm long) is maintained at 100 C by immersing in a pot of boiling water and the other end at 00C by an ice-water mixture. If the cross-sectional area of the rod is 1.3 cm2, how much will the rod melt in 20 min? What will be the steady temperature at the Al-Cu junction?
The figure is a section of a conducting rod of radius R1 = 1.20 mm and...
The figure is a section of a conducting rod of radius R1 = 1.20 mm and length L = 13.80 m inside a thin-walled coaxial conducting cylindrical shell of radius R2 = 10.1R1 and the (same) length L. The net charge on the rod is Q1 = +3.41 × 10-12 C; that on the shell is Q2 = -2.33Q1. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r...
The figure is a section of a conducting rod of radius R1 = 1.45 mm and...
The figure is a section of a conducting rod of radius R1 = 1.45 mm and length L = 12.60 m inside a thin-walled coaxial conducting cylindrical shell of radius R2 = 10.7R1 and the (same) length L. The net charge on the rod is Q1 = +3.56
A 1.60 m cylindrical rod of diameter 0.550 cm is connected to a power supply that...
A 1.60 m cylindrical rod of diameter 0.550 cm is connected to a power supply that maintains a constant potential difference of 17.0 V across its ends, while an ammeter measures the current through it. You observe that at room temperature (20.0 ∘ C ) the ammeter reads 18.8 A , while at 92.0 ∘C it reads 17.3 A . You can ignore any thermal expansion of the rod. Part A Find the resistivity and for the material of the...
The figure below is a section of a conducting rod of radius R1 = 1.30 mm...
The figure below is a section of a conducting rod of radius R1 = 1.30 mm and length L = 11.00 m inside a thick-walled coaxial conducting cylindrical shell of radius R2 = 10.0R1 and the (same) length L. The net charge on the rod is Q1 = +1.50 10-12C that on the shell is Q2 = −2.00Q1. (a) What is the magnitude E of the electric field at a radial distance of r = 3.00R2? -0.629 Incorrect: Your answer...
Understanding Physics - Problem 3) Part 1) The figure is a section of a conducting rod...
Understanding Physics - Problem 3) Part 1) The figure is a section of a conducting rod of radius R1 = 1.40 mm and length L = 14.40 m inside a thin-walled coaxial conducting cylindrical shell of radius R2 = 11.1R1 and the (same) length L. The net charge on the rod is Q1 = +3.72 × 10-12 C; that on the shell is Q2 = -2.12Q1. What are the (a) magnitude E and (b) direction (radially inward or outward) of...
A cylindrical aluminum pipe of length 1.42 m has an inner radius of 1.60 ×10-3 m...
A cylindrical aluminum pipe of length 1.42 m has an inner radius of 1.60 ×10-3 m and an outer radius of 3.39 ×10-3 m. The interior of the pipe is completely filled with copper. What is the resistance of this unit? (Hint: Imagine that the pipe is connected between the terminals of a battery and decide whether the aluminum and copper parts of the pipe are in series or in parallel.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT