In: Finance
The state Set 4 Life Lottery offers the winner $500 000 now plus 19 annual payments of $500 000. If the market interest rate on investments is 4%, what is the present value of these payments? What is the future value of these payments at the time the last payment is received?
Solution:
Formula to calculate Present Value & Future Value is:
Present Value = Cash flow / (1+r)^n
Future Value = Cash flow (1+r)^n
(1+r)^n | Present Value | ||
initial | 500000 | 500000 | |
1 | 500000 | 1.040 | 480769 |
2 | 500000 | 1.082 | 462278 |
3 | 500000 | 1.125 | 444498 |
4 | 500000 | 1.170 | 427402 |
5 | 500000 | 1.217 | 410964 |
6 | 500000 | 1.265 | 395157 |
7 | 500000 | 1.316 | 379959 |
8 | 500000 | 1.369 | 365345 |
9 | 500000 | 1.423 | 351293 |
10 | 500000 | 1.480 | 337782 |
11 | 500000 | 1.539 | 324790 |
12 | 500000 | 1.601 | 312299 |
13 | 500000 | 1.665 | 300287 |
14 | 500000 | 1.732 | 288738 |
15 | 500000 | 1.801 | 277632 |
16 | 500000 | 1.873 | 266954 |
17 | 500000 | 1.948 | 256687 |
18 | 500000 | 2.026 | 246814 |
19 | 500000 | 2.107 | 237321 |
Total | 7066970 | ||
Remaining installment | (1+r)^n | Future Value | |
19 | 500000 | 2.107 | 1053425 |
18 | 500000 | 2.026 | 1012908 |
17 | 500000 | 1.948 | 973950 |
16 | 500000 | 1.873 | 936491 |
15 | 500000 | 1.801 | 900472 |
14 | 500000 | 1.732 | 865838 |
13 | 500000 | 1.665 | 832537 |
12 | 500000 | 1.601 | 800516 |
11 | 500000 | 1.539 | 769727 |
10 | 500000 | 1.480 | 740122 |
9 | 500000 | 1.423 | 711656 |
8 | 500000 | 1.369 | 684285 |
7 | 500000 | 1.316 | 657966 |
6 | 500000 | 1.265 | 632660 |
5 | 500000 | 1.217 | 608326 |
4 | 500000 | 1.170 | 584929 |
3 | 500000 | 1.125 | 562432 |
2 | 500000 | 1.082 | 540800 |
1 | 500000 | 1.040 | 520000 |
Last payment | 500000 | 1.000 | 500000 |
Total | 14889039 |
Answer Present Value is $7066970 & the Future Value is $14889039.