(a) Determine the Taylor Series centered at a = 1 for the
function f(x) = ln x.
(b) Determine the interval of convergence for this Taylor
Series.
(c) Determine the number n of terms required to estimate the
value of ln(2) to within Epsilon = 0.0001.
Can you please help me solve it step by step.
1. Find Taylor series centered at 1 for f(x) = e^ (x^2). Then
determine interval of convergence.
2. Find the coeffiecient on x^4 in the Maclaurin Series
representation of the function g(x) = 1/ (1-2x)^2
The function f(x)= x^−5 has a Taylor series at a=1 . Find the
first 4 nonzero terms in the series, that is write down the Taylor
polynomial with 4 nonzero terms.