Find the radius of convergence, R, of the series. Find
the interval, I, of convergence of the series. (Enter your
answer using interval notation
∞
(−1)n
(x −
4)n
3n +
1
n = 0
∞
(x −
4)n
n7 + 1
n = 0
∞
7n (x +
5)n
n
n = 1
∞
(x −
13)n
nn
n = 1
∞
4nxn
n2
n = 1
1) Find the radius of convergence and interval
of convergence of the given series Σ x^2n/n!
2) Find the power series representation of
f(x)=(x-1)/(x+2) first then find its interval of convergence.
find the radius of convergence and interval of convergence of
the series ∑ n=1 ~ ∞ (3^n)((x+4)^n) / √n
Please solve this problem with detailed process of solving.
I can't understand why the answer is [-13/3, -11/3)
I thought that the answer was (-13/3, -11/3].
Can you explain why that is the answer?
1. expand each function in a Taylor Series and determine radius
of convergence.
a) f(x) = 1/(1-x) at x0 = 0
b) f(x) = e^(-x) at x0 = ln(2)
c) f(x) = sqrt(1+x) at x0 = 0