find the radius of convergence and interval of convergence of
the series ∑ n=1 ~ ∞ (3^n)((x+4)^n) / √n
Please solve this problem with detailed process of solving.
I can't understand why the answer is [-13/3, -11/3)
I thought that the answer was (-13/3, -11/3].
Can you explain why that is the answer?
Find the radius of convergence, R, of the series. Find
the interval, I, of convergence of the series. (Enter your
answer using interval notation
∞
(−1)n
(x −
4)n
3n +
1
n = 0
∞
(x −
4)n
n7 + 1
n = 0
∞
7n (x +
5)n
n
n = 1
∞
(x −
13)n
nn
n = 1
∞
4nxn
n2
n = 1
1. expand each function in a Taylor Series and determine radius
of convergence.
a) f(x) = 1/(1-x) at x0 = 0
b) f(x) = e^(-x) at x0 = ln(2)
c) f(x) = sqrt(1+x) at x0 = 0
1) Find the radius of convergence and interval
of convergence of the given series Σ x^2n/n!
2) Find the power series representation of
f(x)=(x-1)/(x+2) first then find its interval of convergence.
#13) Find the radius and interval of convergence of the power
series (Sigma∞ n=1) (−1)^n(x − 1)^n/n4^n by responding to the
following sequence of questions.
(a) Compute the limit L = lim n→∞ |an+1|/|an| .
(b) Given that the power series absolutely converges for L <
1 by the Ratio Test, compute the radius of convergence, where the
radius of convergence is the real number R such that the power
series converges for all |x| < R.
(c) Test whether...