Question

In: Statistics and Probability

Depths of pits on a corroded steel surface are normally distributed with mean 820 μm and...

Depths of pits on a corroded steel surface are normally distributed with mean 820 μm and standard deviation 29 μm.

a) Find the 10th percentile of pit depths.

b) A certain pit is 780 μm deep. What percentile is it on? (Round up the final answer to the nearest whole number.)

Solutions

Expert Solution

Solution:-

Given that,

mean = = 820 um

standard deviation = = 29 um

a) Using standard normal table,

P(Z < z) = 10%

= P(Z < z ) = 0.10

= P(Z < -1.28 ) = 0.10  

z = -1.28

Using z-score formula,

x = z * +

x = -1.28 * 29 + 820

x = 782.88

x = 783 um

b) P(x < 780)

= P[(x - ) / < (780 - 820) / 29]

= P(z < -1.38)

Using z table,

= 0.0838

The percentage is = 8.38%

A percentile = 8 th percentile


Related Solutions

The weekly wages of steel workers at a steel plant are normally distributed with a mean...
The weekly wages of steel workers at a steel plant are normally distributed with a mean weekly wage of $940 and a standard deviation of $85. There are 1540 steel workers at this plant. a) What is the probability that a randomly selected steel worker has a weekly wage i) Of more than $850? ii) Between $910 and $960? b) What percentage of steel workers have a weekly wage of at most $820? c) Determine the total number of steel...
A. A company produces steel rods. The lengths of the steel rods are normally distributed with...
A. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 162.4-cm and a standard deviation of 0.6-cm. For shipment, 16 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 162.6-cm. P(¯xx¯ < 162.6-cm) = B. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 246.8-cm and a standard...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 167.1-cm and a standard deviation of 0.6-cm. For shipment, 6 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N( , ) What is the distribution of ¯xx¯? ¯xx¯ ~ N( , ) For a single randomly selected steel rod, find the probability that the length is between 166.9-cm...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 195.2-cm and a standard deviation of 0.8-cm. For shipment, 22 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 195.1-cm. P(M < 195.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 143.6-cm and a standard deviation of 0.8-cm. For shipment, 41 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of X ? X ~ N(,) What is the distribution of ¯x ? ¯x ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 143.4-cm and 143.5-cm....
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 222-cm and a standard deviation of 1.5-cm. For shipment, 9 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 222.1-cm. P(M < 222.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 124.7-cm and a standard deviation of 1.6-cm. For shipment, 17 steel rods are bundled together. Find P83, which is the average length separating the smallest 83% bundles from the largest 17% bundles. P83 = -cm Please provide a step-by-step!
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 106.4-cm and a standard deviation of 1.8-cm. For shipment, 9 steel rods are bundled together. Round all answers to four decimal places if necessary. A. What is the distribution of X? X ~ N(     ,     ) B. What is the distribution of ¯x? ¯x ~ N(      ,    ) C. For a single randomly selected steel rod, find the probability that the length...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 207.2-cm and a standard deviation of 2.3-cm. For shipment, 17 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N(,) What is the distribution of ¯xx¯? ¯xx¯ ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 207.4-cm and 207.9-cm. For a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 127.3-cm and a standard deviation of 1.7-cm. Find the proportion of steel rods with lengths between 130.7 cm and 132.2 cm. Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT