Question

In: Statistics and Probability

The table below summarizes data from a survey of a sample of women. Using a 0.010.01...

The table below summarizes data from a survey of a sample of women. Using a

0.010.01

significance​ level, and assuming that the sample sizes of

800800

men and

400400

women are​ predetermined, test the claim that the proportions of​ agree/disagree responses are the same for subjects interviewed by men and the subjects interviewed by women. Does it appear that the gender of the interviewer affected the responses of​ women?

Gender of Interviewer

Man

Woman

Women who agree

489489

329329

Women who disagree

311311

7171

Click here to view the chi-square distribution table.

LOADING...

Identify the null and alternative hypotheses. Choose the correct answer below.

A.

Upper H 0H0​:

The response of the subject and the gender of the subject are independent.

Upper H 1H1​:

The response of the subject and the gender of the subject are dependent.

B.

Upper H 0H0​:

The proportions of​ agree/disagree responses are the same for the subjects interviewed by men and the subjects interviewed by women.

Upper H 1H1​:

The proportions are different.

C.

Upper H 0H0​:

The proportions of​ agree/disagree responses are different for the subjects interviewed by men and the subjects interviewed by women.

Upper H 1H1​:

The proportions are the same.

2. what is the test statistic?

3. what is the critical value x squared?

4 fail to reject or reject and why?

Solutions

Expert Solution

We want to test that the response of the subject and the gender of the subject are independent.

Ho:- The response of the subject and the gender of the subject are independent.

vs

Ha:- The response of the subject and the gender of the subject are dependent.

We may conclude that the data provides the sufficeint evidence to support the claim that the response of the subject and the gender of the subject are dependent.


Related Solutions

The table below summarizes data from a survey of a sample of women. Using a 0.05...
The table below summarizes data from a survey of a sample of women. Using a 0.05 significance​ level, and assuming that the sample sizes of 900 men and 400 women are​ predetermined, test the claim that the proportions of​ agree/disagree responses are the same for subjects interviewed by men and the subjects interviewed by women. Does it appear that the gender of the interviewer affected the responses of​ women? Gender of Interviewer Man Woman Women who agree 619 314 Women...
The table below summarizes data from a survey of a sample of women. Using a 0.01...
The table below summarizes data from a survey of a sample of women. Using a 0.01 significance​ level, and assuming that the sample sizes of 900men and 300 women are​ predetermined, test the claim that the proportions of​ agree/disagree responses are the same for subjects interviewed by men and the subjects interviewed by women. Does it appear that the gender of the interviewer affected the responses of​ women? Man Woman Women who agree 617 235 Women who disagree 283 65...
The table below summarizes data from a survey of a sample of women. Using a 0.050.05...
The table below summarizes data from a survey of a sample of women. Using a 0.050.05 significance​ level, and assuming that the sample sizes of 800800 men and 300300 women are​ predetermined, test the claim that the proportions of​ agree/disagree responses are the same for subjects interviewed by men and the subjects interviewed by women. Does it appear that the gender of the interviewer affected the responses of​ women? Gender of Interviewer Man Woman Women who agree 517517 262262 Women...
The table below summarizes data from a survey of a sample of women. Using a 0.05...
The table below summarizes data from a survey of a sample of women. Using a 0.05 significance​ level, and assuming that the sample sizes of 700 men and 300 women are​ predetermined, test the claim that the proportions of​ agree/disagree responses are the same for subjects interviewed by men and the subjects interviewed by women. Does it appear that the gender of the interview affected the responses of​ women? Man Woman Woman who agree 481 245 Woman who disagree 219...
The table below summarizes data from a survey of a sample of women. Using a 0.05...
The table below summarizes data from a survey of a sample of women. Using a 0.05 significance​ level, and assuming that the sample sizes of 900 men and 400 women are​ predetermined, test the claim that the proportions of​ agree/disagree responses are the same for subjects interviewed by men and the subjects interviewed by women. Does it appear that the gender of the interviewer affected the responses of​ women?    Man   Woman Women who agree   605   322 Women who disagree  ...
Use the data in the accompanying table that summarizes results from a clinical trial of a...
Use the data in the accompanying table that summarizes results from a clinical trial of a drug. Let A = Drug Treatment, B = Placebo headache No Headache total Drug Treatment (A) 122 585 707 Placebo ( B) 28 672 700 Total 150 1257 1407 Answer the following: 1. Find the probability that patient under treatment p(A) 2. Find p(B) 3. Find the probability a patient has a headache 4. Find the probability a patient has a headache and he...
Below is a data table from a survey of 12 random car owners that were asked...
Below is a data table from a survey of 12 random car owners that were asked about their typical monthly expenses in dollars on gasoline. 210 160 43 255 176 135 221 359 380 405 391 477 (a) Is there evidence at the 5% significance level to suggest the mean monthly gasoline expense for all car owners is less than $200? (b) Interpret the P-value in the context of this test. (c) Explain what a Type I error would mean...
Using the simple random sample of weights of women from a data​ set, we obtain these...
Using the simple random sample of weights of women from a data​ set, we obtain these sample​ statistics: the sample size is 40 and the sample mean was 151.83 pounds. Research from other sources suggests that the population of weights of women has a standard deviation of 30.43 pounds. Find the 90% confidence interval estimate of the mean weight of all women.
Using the simple random sample of weights of women from a data set, we obtain these...
Using the simple random sample of weights of women from a data set, we obtain these sample statistics: n=50and xbar=140.23lb. Research from other sources suggests that the population of weights of women has a standard deviation given by σ=32.31 lb. a. Find the best point estimate of the mean weight of all women. b. Find a 99 % confidence interval estimate of the mean weight of all women.
Using the simple random sample of weights of women from a data​ set, we obtain these...
Using the simple random sample of weights of women from a data​ set, we obtain these sample​ statistics: n=50 and x overbar=142.71 lb. Research from other sources suggests that the population of weights of women has a standard deviation given by sigma=31.7631.76 lb. a. Find the best point estimate of the mean weight of all women. b. Find a 90​% confidence interval estimate of the mean weight of all women.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT