In: Statistics and Probability
An experiment was performed to compare the fracture toughness of high-purity 18 Ni maraging steel with commercial-purity steel of the same type. For m = 34 specimens, the sample average toughness was x = 63.4 for the high-purity steel, whereas for n = 37 specimens of commercial steel y = 57.8. Because the high-purity steel is more expensive, its use for a certain application can be justified only if its fracture toughness exceeds that of commercial-purity steel by more than 5. Suppose that both toughness distributions are normal.
(a) Assuming that σ1 = 1.2 and
σ2 = 1.1, test the relevant hypotheses using
α = 0.001. (Use μ1 −
μ2, where μ1 is the average
toughness for high-purity steel and μ2 is the
average toughness for commercial steel.)
Calculate the test statistic and determine the
P-value. (Round your test statistic to two decimal places
and your P-value to four decimal places.)
| z | = | |
| P-value | = | 
(b) Compute β for the test conducted in part
(a) when μ1 − μ2 = 6.
(Round your answer to four decimal places.)
β =
You may need to use the appropriate table in the Appendix of Tables
to answer this question.
a)
Ho :   µ1 - µ2 =   5  
       
Ha :   µ1-µ2 > 5      
   
          
       
Level of Significance ,    α =   
0.001          
          
       
sample #1   ------->      
       
mean of sample 1,    x̅1=   63.4  
       
population std dev of sample 1,   σ1 =   
1.2          
size of sample 1,    n1=   34  
       
          
       
sample #2   --------->      
       
mean of sample 2,    x̅2=   57.8  
       
population std dev of sample 2,   σ2 =   
1.1          
size of sample 2,    n2=   37  
       
          
       
difference in sample means = x̅1 - x̅2 =   
63.4   -   57.8   =  
5.6
          
       
std error , SE =    √(σ1²/n1+σ2²/n2) =   
0.2740          
          
       
Z-statistic = ((x̅1 - x̅2)-µd)/SE = (5.6-5) /  
0.2740   =   2.19
p-value = 0.0143 [Excel function
=NORMSDIST(-z)  
b)
ß = P(Z< Zα/2 - true difference in mean/SE)  - P(Z
< -Zα/2 - true difference in mean/SE)
Zα =       3.0902   (right
tailed test)
ß = P(Z< 3.0902 - (6-5)/0.2740) - P(Z< -3.0902 - (6-5)/0.2740) = P(Z<-0.5594 ) - P(Z< -6.7398) = 0.2879 - 0.000 = 0.2879(answer)