Question

In: Advanced Math

4. Consider the linear program in problem 3. The value of the optimal solution is 48....

4. Consider the linear program in problem 3. The value of the optimal solution is 48. Suppose the right-hand side for constraint 1 is increased from 9 to 10.

(problem 3 linear program)

Min 8X+12Y s.t.

1X+3Y≥9

2X+2Y≥10

6X+2Y≥18

A,B≥0

A) Use the graphical solution procedure to find the new optimal solution.

b) Use the solution to part (a) to determine the shadow price for constraint 1.

c) The sensitivity report for the linear program in Problem 3 provides the following right-hand-side range information:

Constriant

RHS values

Allowable Increase

Allowable Decrease

1

9.00000

2.00000

4.00000

2

10.00000

8.00000

1.00000

3

18.00000

4.00000

Infinite

What does the right-hand-side range information for constraint 1 tell you about the shadow price for constraint 1?

d) The shadow price for constraint 2 is 3. Using this shadow price and the right-hand-side range information in part (c), what conclusion can be drawn about the effect of changes to the right-hand side of constraint 2?

Please show the steps to solving the problem. Thank you.

Solutions

Expert Solution


Related Solutions

The optimal solution of the linear programming problem is at the intersection of constraints 1 and...
The optimal solution of the linear programming problem is at the intersection of constraints 1 and 2. Please answer the following questions by using graphical sensitivity analysis. Max s.t. Max 2x1 + x2 s.t. 4x1 +1x2 ≤8 4x1 +3x2 ≤12 1x1 +2x2 ≤6 x1 , x2 ≥ 0 Over what range can the coefficient of x1 vary before the current solution is no longer optimal? Over what range can the coefficient of x2 vary before the current solution is no...
For the following linear programming problem, determine the optimal solution by the graphical solution method Max...
For the following linear programming problem, determine the optimal solution by the graphical solution method Max -x + 2y s.t. 6x - 2y <= 3 -2x + 3y <= 6     x +   y <= 3         x, y >= 0
What is the difference between the optimal solution to a linear programming problem and the objective...
What is the difference between the optimal solution to a linear programming problem and the objective function value at the optimal solution? Use an example in your explanation
1. The optimal solution of the linear programming problem is at the intersection of constraints 1...
1. The optimal solution of the linear programming problem is at the intersection of constraints 1 and 2. Please answer the following questions by using graphical sensitivity analysis. Max 2x1 + x2 s.t. 4x1 +1x2 ≤8 4x1 +3x2 ≤12   1x1 +2x2 ≤6 x1 , x2 ≥ 0 A. Over what range can the coefficient of x1 vary before the current solution is no longer optimal? B. Over what range can the coefficient of x2 vary before the current solution is...
Distinguish between basic feasible solution, feasible solution and optimal solution of a linear programming problem. Solve...
Distinguish between basic feasible solution, feasible solution and optimal solution of a linear programming problem. Solve the following LPP graphically: Y=q1+4q2 Subject to 2q1+6q2<=36 2q1+2q2<=16 4q1+2q2<=28 q1,q2>=0
Use the graphical method for linear programming to find the optimal solution for the following problem....
Use the graphical method for linear programming to find the optimal solution for the following problem. Maximize P = 4x + 5 y subject to 2x + 4y ≤ 12                 5x + 2y ≤ 10 and      x ≥ 0, y ≥ 0. graph the feasible region
If a linear program has more than one optimal solution, does this mean that it doesn’t...
If a linear program has more than one optimal solution, does this mean that it doesn’t matter which solution is selected?
What's the optimal solution to this linear programming problem? Max 2X + 3Y s.t.   4X +  ...
What's the optimal solution to this linear programming problem? Max 2X + 3Y s.t.   4X +   9Y ≤ 72 10X + 11Y ≤ 110 17X +   9Y ≤ 153           X, Y ≥ 0
To find the optimal solution to a linear optimization problem, do you have to examine all...
To find the optimal solution to a linear optimization problem, do you have to examine all the points in the feasible region? Explain. Can a linear programming problem have no solution? More than one solution? Explain. ---------------------------------------------------------------------------------------------------------------- A beverage can manufacturer makes three sizes of soft drink cans—Small, Medium and Large. Production is limited by machine availability, with a combined maximum of 90 production hours per day, and the daily supply of metal, no more than 120 kg per day....
Problem:  Using Solver, solve the linear program to find the optimal number of batches to make of...
Problem:  Using Solver, solve the linear program to find the optimal number of batches to make of each of the three cookies. Price per chocolate chip cookie $                      1.50 Price per sugar cookie $                      1.00 Price per snickerdoodle cookie $                      1.00 Recipes for one batch Number of cookies/batch 20 20 30 Ingredient Chocolate chip cookie recipe Sugar cookie recipe Snickdoodle recipe Butter (sticks) 2 2 2 Sugar (cups) 1 2 1 Eggs 2 3 1 Chocolate chips (cups) 1 0 0...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT