Question

In: Economics

Consider a consumer with a lifetime utility function U = u(Ct) + βu(Ct+1) that satisfies all...

Consider a consumer with a lifetime utility function U = u(Ct) + βu(Ct+1) that satisfies all the standard assumptions listed in the book

The period t and t + 1 budget constraints are

Ct + St = Yt

Ct+1 + St+1 = Yt+1 + (1 + r)S

(a) What is the optimal value of St+1? Impose this optimal value and derive the lifetime budget constraint.

(b) Derive the Euler equation. Explain the economic intuition of the equation.

Solutions

Expert Solution

A).

Consider the given problem here the individual live in two period model “present(t)” and “future(t+1)”. So, here the budget constraint of the two periods are given by.

=> Ct+St=Yt for “period1” and “Ct+1+St+1=Yt+1+(1+r)*St” for “period2”.   

Now, since this is a two period model, => St+1=0.

=> Ct+1+St+1=Yt+1+(1+r)*St, => Ct+1= Yt+1 + (1+r)*St, => Ct+1= Yt+1 + (1+r)*(Yt-Ct).

=> Ct+1= Yt+1 + (1+r)*(Yt-Ct) = Yt+1 + (1+r)*Yt - (1+r)*Ct.

=> (1+r)*Ct + Ct+1 = Yt+1 + (1+r)*Yt, => Ct + Ct+1/(1+r) = Yt+1/(1+r) + Yt.

=> Ct + Ct+1/(1+r) = Yt + Yt+1/(1+r), be the “intertemporal budget constraint”.

b).

So, here the utility maximization problem is given by.

=> Max U = U(Ct) + b*U(Ct+1) subject to “Ct + Ct+1/(1+r) = Yt + Yt+1/(1+r)”.

The lagrangian problem is given by.

=> L = U(Ct) + b*U(Ct+1) + c[Yt + Yt+1/(1+r) - Ct – Ct+1/1+r].

Now, the FOC are given by dL/dCt=dL/dCt+1 = 0”.

=> dL/dCt = 0, => u’(Ct) + c(-1) = 0, => u’(Ct) = c …………….(1).

=> dL/dCt+1 = 0, => b*u’(Ct+1) + c(-1)/1+r = 0, => b*u’(Ct+1) = c/1+r …………….(2).

Now, (1) divided (2) we have the following condition.

=> u’(Ct)/ b*u’(Ct+1) = (1+r) ………………………(3).

So, here the equation (3) is the “Euler Equation”. So, here this equation shows the MRS between consumption today and next period is equal to the relative price between the “today’s” consumption and the “tomorrow’s consumption”.


Related Solutions

Consumption-Savings Consider a consumer with a lifetime utility function U = u(Ct) + βu(Ct+1) that satisfies...
Consumption-Savings Consider a consumer with a lifetime utility function U = u(Ct) + βu(Ct+1) that satisfies all the standard assumptions listed in the book. The period t and t + 1 budget constraints are Ct + St = Yt Ct+1 + St+1 = Yt+1 + (1 + r)St. Now suppose Ctis taxed at rate τ so consumers pay 1 + τ for one unit of period t consumption. (a) What is the optimal value of St+1? Impose this optimal value...
Consumption-Savings Consider a consumer with a lifetime utility function U = u(Ct) + βu(Ct+1) that satisfies...
Consumption-Savings Consider a consumer with a lifetime utility function U = u(Ct) + βu(Ct+1) that satisfies all the standard assumptions listed in the book. The period t and t + 1 budget constraints are Ct + St = Yt Ct+1 + St+1 = Yt+1 + (1 + r)St (a) What is the optimal value of St+1? Impose this optimal value and derive the lifetime budget constraint. (b) Derive the Euler equation. Explain the economic intuition of the equation
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has an income denoted by I which is devoted to goods X and Y. The prices of goods X and Y are denoted PX and PY. a. Find the consumer’s marginal utility of X (MUX) and marginal utility of Y (MUY). b. Find the consumer’s marginal rate of substitution (MRS). c. Derive the consumer's demand equations for both goods as functions of the variables PX,...
Consider a consumer with the Utility function: U = C^1/5 O^ 4/5 and facing a budget...
Consider a consumer with the Utility function: U = C^1/5 O^ 4/5 and facing a budget constraint: M ≥ PcC +PoO Note: For this utility function MUC = (1/5)C^-4/5 O^ 4/5 and MUo = (4/5)C^1/5 O^ -1/5 Where C denotes the consumption of corn, and O denotes the consumption of other goods. A) For corn, characterize the income elasticity of demand, the price elasticity of demand, the cross price elasticity of demand and explain what each represents. (You do not...
Consider a consumer with the Utility function: U = C^1/5 O^ 4/5 and facing a budget...
Consider a consumer with the Utility function: U = C^1/5 O^ 4/5 and facing a budget constraint: M ≥ PcC +PoO Note: For this utility function MUC = (1/5)C^-4/5 O^ 4/5 and MUo = (4/5)C^1/5 O^ -1/5 Where C denotes the consumption of corn, and O denotes the consumption of other goods. A) Derive the Marshallian demand functions for C and O using the equilibrium conditions for an interior solution. B) Graph and fully label the Demand Curve for corn...
Consider a representative consumer with the utility function ?(?, ?) = ?? + ? and the...
Consider a representative consumer with the utility function ?(?, ?) = ?? + ? and the budget constraint ??? + ??? ≤ ?. Assume throughout that all prices and quantities are positive and infinitely divisible. Find the equation of an arbitrary indifference curve for this utility function (evaluated at ̅ utility level ?). Sketch of graph of this indifference curve (be sure to justify its shape and to derive/demark any points of intersection with the axes).
consider a representative consumer with the utility function ?(?, ?) = ?? + ? and the...
consider a representative consumer with the utility function ?(?, ?) = ?? + ? and the budget constraint ??? + ??? ≤ ?. Assume throughout that all prices and quantities are positive and infinitely divisible. Assume initially that ?? = ?? = 1 and ? = 10.  Derive the consumers equilibrium cross-price elasticity between goods ? and ? and evaluate the value of this elasticity at the initial parameter values given .
Consider a representative consumer with the utility function ?(?, ?) = ?? + ? and the...
Consider a representative consumer with the utility function ?(?, ?) = ?? + ? and the budget constraint ??? + ??? ≤ ?. Assume throughout that all prices and quantities are positive and infinitely divisible. 1.a.Derive the consumer’s indirect utility function ?(∙). b.Then, derive the consumer’s expenditure function, e(∙), directly from ?(∙). c.Finally, derive the consumer’s Hicksian/compensated demand functions (denoted ? and ? , respectively) from e(∙). ?? 2.Assume initially that ?? = ?? = 1 and ? = 10....
Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of...
Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of px = 1 and py = 2. Assuming that graphically good x is on the horizontal axis and good y is on the vertical axis, suppose the consumer chooses to consume 5 units of good x and 13 units of good y. What is the marginal rate of substitution (MRS) equal to?
Consider the following utility function: U = 100X0.10 Y 0.75. A consumer faces prices of Px...
Consider the following utility function: U = 100X0.10 Y 0.75. A consumer faces prices of Px = $5 and Py =$5. Assuming that graphically good X is on the horizontal axis and good Y is on the vertical axis, suppose the consumer chooses to consume 7 units of good X and 15 units of good Y. Then the marginal rate of substitution6 is equal to: MRS = . (Enter your response rounded to two decimal places. Do not forget to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT