In: Statistics and Probability
Find the following probabilities for test scores X, for which the mean is 400 and the standard deviation is 120. Assume that the test scores are described by a normal curve. (Round all answers to four decimal places.)
(a) P(X ≤ 400).
(b) P(X ≤ 580).
(c) P(X ≥ 640).
(d) P(400 ≤ X ≤ 640).
Solution :
Given that ,
mean = = 400
standard deviation = = 120
a) P(x 400)
= P[(x - ) / (400 - 400) / 120]
= P(z 0 )
Using z table,
= 0.5
b) P(x 580)
= P[(x - ) / (580 - 400) / 120]
= P(z 1.5 )
Using z table,
= 0.9332
c) P(x 640 ) = 1 - P(x 640)
= 1 - P[(x - ) / (640 - 400) /120 ]
= 1 - P(z 2.0)
Using z table,
= 1 - 0.9772
= 0.0228
d) P(400 x 640)
= P[(400 - 400 / 120) (x - ) / (640 - 400 / 120 ) ]
= P(0 z 2.0)
= P(z 2.0) - P(z 0)
Using z table,
= 0.9772 - 0.5
= 0.4772