Question

In: Civil Engineering

A cantilever, 2.6 m long, carryinga uniformly distributed load w along the entire length, is propped...

A cantilever, 2.6 m long, carryinga uniformly distributed load w along the entire length, is propped at its free end to the level of the fixed end. If the load on the prop is then 30 kN, calculate the value of w. Determine also the slope of the beam at the support. If any formula for deflection is used it must first be proved. E = 210GN/m2; I = 4 x 10-6m4.

Solutions

Expert Solution


Related Solutions

A cantilever bean is 12 feet long and has a uniformly distributed dead load of 600...
A cantilever bean is 12 feet long and has a uniformly distributed dead load of 600 lbs/ft and a uniformly distributed live load of 1000 lbs/ft. Design the beam for flexure assuming it is continuously braces by a floor/deck system. Use 36 ksi steel. a) draw Free body Diagram/ shear + moment diagram to find Mu Max b) Solve for Zx based on Mu Max c) Select beam from table 9.1 d) Check compactness criteria e) if compactness works, recalculate...
Q6: A cantilever beam having span ‘L’ m was subjected to a uniformly distributed load of...
Q6: A cantilever beam having span ‘L’ m was subjected to a uniformly distributed load of magnitude 8 kN/m for a distance of ‘0.6 L’ from the free end and two concentrated loads one of magnitude 15 kN at a distance ‘0.25 L’ m from the free end while the other of magnitude ‘22’ kN at a distance ‘0.6 L’ m from the free end respectively. It was observed that the maximum bending moment acting on the beam is equal...
Q1: A cantilever beam having span ‘L’ m was subjected to a uniformly distributed load of...
Q1: A cantilever beam having span ‘L’ m was subjected to a uniformly distributed load of magnitude 8 kN/m for a distance of ‘0.6 L’ from the free end and two concentrated loads one of magnitude 15 kN at a distance ‘0.25 L’ m from the free end while the other of magnitude ‘22’ kN at a distance ‘0.6 L’ m from the free end respectively. It was observed that the maximum bending moment acting on the beam is equal...
A simply supported beam 10-m long is acted upon by a uniformly distributed dead load of...
A simply supported beam 10-m long is acted upon by a uniformly distributed dead load of 20 kN/m and a uniformly distributed live load of 48 kN/m throughout its span. Design the footings of each columns located at the supports using the following data Depth of Footing (Df)                                                   =             1.20 meters Allowable Soil Pressure (qall)                                      =             210 kPa Unit Weight of Soil (γs)                                                =             17 kN/m3 Unit Weight of Concrete (γc)                                      =             24 kN/m3 Design Compressive Strength of Concrete (f’c)     =             27.6 MPa Yield Strength of Reinforcing Steel (fy)                    =             276 MPa...
A line of charge 2.0 m long has 50.0 nC of charge uniformly distributed along it....
A line of charge 2.0 m long has 50.0 nC of charge uniformly distributed along it. (a) Calculate the electric field 0.25 m above the center of the line. (b) If the field point were moved from 0.25 m to 1.0 m, by what factor does the field increase/decrease? (c) How does this compare with moving the field point from 0.25 m to 1.0 m away from a point charge?
- A charge of 22 nC is uniformly distributed along a straight rod of length 13...
- A charge of 22 nC is uniformly distributed along a straight rod of length 13 m that is bent into a circular arc with a radius of 5.6 m. What is the magnitude of the electric field at the center of curvature of the arc? - How much work is required to turn an electric dipole 180o in a uniform electric field of magnitude 42.2 N/C if p = 3.50 × 10-25 C·m and the initial angle is 62.8o....
Design for flexure a beam 12 ft in length, having a uniformly distributed dead load of...
Design for flexure a beam 12 ft in length, having a uniformly distributed dead load of 1 kip/ft, a uniformly distributed live load of 1 kip/ft, and a concentrated dead load of 8.4 kips a distance of 5 ft from one support Show all the steps. (LRFD) Fy = 50k/in2    E = 29,000k/in2
A)A straight, nonconducting plastic wire 7.50cm long carries a charge density of 130nC/m distributed uniformly along...
A)A straight, nonconducting plastic wire 7.50cm long carries a charge density of 130nC/m distributed uniformly along its length. It is lying on a horizontal tabletop. -Find the magnitude and direction of the electric field this wire produces at a point 5.00cm directly above its midpoint. B) pick one of the two - electric field is directed upward - electric field is directed downward C) If the wire is now bent into a circle lying flat on the table, find the...
A straight, nonconducting plastic wire 7.50cm long carries a charge density of 130nC/m distributed uniformly along...
A straight, nonconducting plastic wire 7.50cm long carries a charge density of 130nC/m distributed uniformly along its length. It is lying on a horizontal tabletop. Part A Find the magnitude and direction of the electric field this wire produces at a point 5.00cm directly above its midpoint. Part C If the wire is now bent into a circle lying flat on the table, find the magnitude and direction of the electric field it produces at a point 5.00cm directly above...
A finite rod of length LLL has total charge qqq, distributed uniformly along its length. The...
A finite rod of length LLL has total charge qqq, distributed uniformly along its length. The rod lies on the x -axis and is centered at the origin. Thus one endpoint is located at (−L/2,0)(−L/2,0), and the other is located at (L/2,0)(L/2,0). Define the electric potential to be zero at an infinite distance away from the rod. Throughout this problem, you may use the constant kkk in place of the expression 14πϵ014πϵ0. Part A What is VAVAV_A, the electric potential...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT