Question

In: Statistics and Probability

Four cards are dealt from a deck of 52 cards. ​(a) What is the probability that...

Four cards are dealt from a deck of 52 cards.

​(a) What is the probability that the ace of spades is one of the 4 cards​?

(b) Suppose one of the 4 cards is chosen at random and found not to be the ace of spades. What is the probability that none of the 4 cards is the ace of​ spades?

​(c) Suppose the experiment in part​ (b) is repeated a total of 10 times​ (replacing the card looked at each​ time), and the ace of spades is not seen. What is the probability that the ace of spades actually is one of the 4 cards?

Solutions

Expert Solution


Related Solutions

You are dealt one card from a deck of 52 cards. What is the probability of...
You are dealt one card from a deck of 52 cards. What is the probability of drawing the jack of clubs or the three of diamonds?
Three cards are dealt from a standard deck of 52. What is the probability of getting:...
Three cards are dealt from a standard deck of 52. What is the probability of getting: (a) 2 fives and 1 two? 0.001 (b) at most 2 diamonds? 0.987 (c) not getting a black card? Please answer all question aight the right answer and explain.
A hand of 13 cards is dealt from a standard deck of 52 playing cards. What...
A hand of 13 cards is dealt from a standard deck of 52 playing cards. What is the probability that it contains more spades (♠) than hearts (♡) given that the hand contains at least two spades?
Assume that 5 cards are dealt at random from a standard deck of 52 cards (there...
Assume that 5 cards are dealt at random from a standard deck of 52 cards (there are 4 suits in the deck and 13 different values (ranks) per each suit). We refer to these 5 cards as a hand in the rest of this problem. Calculate the probability of each of the following events when dealing a 5-card hand at random. (a) Exactly one pair: This occurs when the cards have numeric values a, a, b, c, d, where a,...
From a deck of 52 cards a card is drawn, what is the probability that the...
From a deck of 52 cards a card is drawn, what is the probability that the card is a King or a Red card
You are dealt a hand of five cards from a standard deck of 52 playing cards....
You are dealt a hand of five cards from a standard deck of 52 playing cards. Calculate the probability of the given type of hand. (None of them is a recognized poker hand.) (a) Mixed royal meeting: One of each type or royal card (king, queen, jack, ace) of different suites, and a last non-royal card (neither king, queen, jack or ace). Enter a formula. Examples: C(5,3)C(33,3)/C(14,2) C(5,3)C(33,3)C(4,1)/C(100,100) (b) Red and black double royal wedding: A red king, a red...
You are dealt a hand of five cards from a standard deck of 52 playing cards....
You are dealt a hand of five cards from a standard deck of 52 playing cards. Calculate the probability of the given type of hand. (None of them is a recognized poker hand.) 1. Double royal interracial wedding: Two kings of one color, two queens of the other color, and a last non-royal card (neither king, queen, jack or ace). Solve using a formula. Examples:  C(5,3)C(33,3)/C(14,2) or C(5,3)C(33,3)C(4,1)/C(100,100)
A bridge hand consists of 13 randomly-dealt cards from a standard deck of 52 cards. What...
A bridge hand consists of 13 randomly-dealt cards from a standard deck of 52 cards. What is the probability that, in a randomly-dealt bridge hand, there is no card that is a ten or higher? (By ten or higher we mean that a card is either a ten, a jack, a queen, a king, or an ace.)
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards....
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards. The order of the cards does not matter. Determine the following probabilities for a 5-card poker hand. Write your answers in percent form, rounded to 4 decimal places. Determine the probability that exactly 3 of these cards are Aces. Answer:  % Determine the probability that all five of these cards are Spades. Answer:  % Determine the probability that exactly 3 of these cards are face cards....
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards....
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards. The order of the cards does not matter. Determine the following probabilities for a 5-card poker hand. Write your answers in percent form, rounded to 4 decimal places. Determine the probability that exactly 3 of these cards are Aces. Answer: % Determine the probability that all five of these cards are Spades. Answer: % Determine the probability that exactly 3 of these cards are...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT