Question

In: Statistics and Probability

A random sample of 49 measurements from one population had a sample mean of 10, with...

A random sample of 49 measurements from one population had a sample mean of 10, with sample standard deviation 3. An independent random sample of 64 measurements from a second population had a sample mean of 12, with sample standard deviation 4. Test the claim that the population means are different. Use level of significance 0.01.

(a) What distribution does the sample test statistic follow? Explain.

(b) State the hypotheses.

(c) Compute x1 2 x2 and the corresponding sample test statistic.

(d) Estimate the P-value of the sample test statistic.

(e) Conclude the test.

(f) Interpret the results.

A random sample of 49 measurements from one population had a sample mean of 10, with sample standard deviation 3. An independent random sample of 64 measurements from a second population had a sample mean of 12, with sample standard deviation 4. Test the claim that the population means are different. Use level of significance 0.01.

(a) What distribution does the sample test statistic follow? Explain.

(b) State the hypotheses.

(c) Compute x1 2 x2 and the corresponding sample test statistic.

(d) Estimate the P-value of the sample test statistic.

(e) Conclude the test.

(f) Interpret the results.

Solutions

Expert Solution

(a-e)

--------------------------------------

(f)

There is evidence to conclude that the population means are different.


Related Solutions

A random sample of 49 measurements from one population had a sample mean of 16, with...
A random sample of 49 measurements from one population had a sample mean of 16, with sample standard deviation 3. An independent random sample of 64 measurements from a second population had a sample mean of 18, with sample standard deviation 4. Test the claim that the population means are different. Use level of significance 0.01. (a) What distribution does the sample test statistic follow? Explain. The standard normal. We assume that both population distributions are approximately normal with known...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 8. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 11. Test the claim that the population means are different. Use level of significance 0.01. (a) Check Requirements: What distribution does the sample test statistic follow? Explain....
A random sample of 49 measurements from a population with population standard deviation σ1 = 3...
A random sample of 49 measurements from a population with population standard deviation σ1 = 3 had a sample mean of x1 = 12. An independent random sample of 64 measurements from a second population with population standard deviation σ2 = 4 had a sample mean of x2 = 14. Test the claim that the population means are different. Use level of significance 0.01. (g) Find a 99% confidence interval for μ1 − μ2. (Round your answers to two decimal...
A random sample of n measurements was selected from a population with unknown mean μ and...
A random sample of n measurements was selected from a population with unknown mean μ and standard deviation σ=35 for each of the situations in parts a through d. Calculate a 95​% confidence interval for muμ for each of these situations. a. n=75​, x overbarx=22 b. n=150​,x overbarxequals=110 c. n=90​, x overbarxequals=18 d. n=90​,x overbarxequals=4.69 e. Is the assumption that the underlying population of measurements is normally distributed necessary to ensure the validity of the confidence intervals in parts a...
A random sample of n measurements was selected from a population with unknown mean μ and...
A random sample of n measurements was selected from a population with unknown mean μ and standard deviation σ = 15 for each of the situations in parts a through d. Calculate a 99% confidence interval for μ for each of these situations. a. n = 75, x̄ = 27 b. n = 150, x̄ = 105 c. n = 125, x̄ = 16 d. n = 125, x̄ = 5.37 e. Is the assumption that the underlying population of...
A random sample of n = 100 measurements is selected from a population with unknown mean...
A random sample of n = 100 measurements is selected from a population with unknown mean µ and known standard deviation σ = 10. (a) (1 point) Calculate the width of a 90% confidence interval for µ. (b) Calculate the width of a 95% confidence interval for µ. (c) (Calculate the width of a 99% confidence interval for µ. (d) Based on the above results, what effect does increasing the confidence coefficient have on the width of the confidence interval.
A random sample of n measurements was selected from a population with unknown mean m and...
A random sample of n measurements was selected from a population with unknown mean m and standard deviation σ=20σ=20 . Calculate a 99% confidence interval for μμ for each of the following situations: a. n=75,x¯¯¯=28 b. n=200,x¯¯¯=102 c. n=100,x¯¯¯=15  d. n=100,x¯¯¯=4.05 a. n=75,x¯=28  b. n=200,x¯=102  c. n=100,x¯=15  d. n=100,x¯=4.05 e. Is the assumption that the underlying population of measurements is normally distributed necessary to ensure the validity of the confidence intervals in parts a–d ? Explain.
A random sample of n measurements was selected from a population with unknown mean mu and...
A random sample of n measurements was selected from a population with unknown mean mu and standard deviation sigma equals 20 for each of the situations in parts a through d. Calculate a 95​% confidence interval for mu for each of these situations. a. n=60​, overbar =29 ​(Round to two decimal places as​ needed.) b. n=250​, xoverbare=113 ​(Round to two decimal places as​ needed.) c. n=90​, xoverbar=18 ​(Round to two decimal places as​ needed.) d. n=90​, xoverbar=4.1 ​(Round to two...
A simple random sample of n measurements from a population is a subset of the population...
A simple random sample of n measurements from a population is a subset of the population selected in a manner such that which of the following is/are true? (Select all that apply. )Every sample of size n from the population has a proportionally weighted chance of being selected. Every sample of size n from the population has an equal chance of being selected. Every member of the population has an equal chance of being included in the sample.The simplest method...
A random sample of ? measurements was selected from a population with standard deviation ?=13.7 and...
A random sample of ? measurements was selected from a population with standard deviation ?=13.7 and unknown mean ?. Calculate a 99 % confidence interval for ? for each of the following situations: (a) n=55, x¯=100.4 ≤?≤ (b)  n=75, x¯=100.4 ≤?≤ (c)  n=105, x¯=100.4 ≤?≤
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT