Question

In: Statistics and Probability

Random samples of size n = 60 were selected from a binomial population with p =...

Random samples of size n = 60 were selected from a binomial population with p = 0.2. Use the normal distribution to approximate the following probabilities. (Round your answers to four decimal places.)

(a)    

P(p̂ ≤ 0.22) =

(b)    

P(0.18 ≤ p̂ ≤ 0.22) =

Solutions

Expert Solution

n = 60, p = 0.2

is normally distributed with mean of = p = 0.2

& standard deviation, = == 0.05164

Z =

a) P(0.22) = P()

= P(Z0.39)

= 0.6517 (from z-table)

b) P(0.18 ≤ p̂ ≤ 0.22) = P(Z)

= P(-0.39Z0.39)

= P(Z0.39)-P(Z-0.39)

= 0.65173-0.34827

=0.30346

=0.3035


Related Solutions

Random samples of size n = 90 were selected from a binomial population with p =...
Random samples of size n = 90 were selected from a binomial population with p = 0.8. Use the normal distribution to approximate the following probability. (Round your answer to four decimal places.) P(p̂ > 0.78) =
If two random samples, each with n = 60 scores, are selected from a population, and...
If two random samples, each with n = 60 scores, are selected from a population, and the z-score and t statistic are computed for each sample, the t statistics will be less variable than the z-scores.
A random sample of size n = 40 is selected from a population that has a...
A random sample of size n = 40 is selected from a population that has a proportion of successes p = 0.8. 1) Determine the mean proportion of the sampling distribution of the sample proportion. 2) Determine the standard deviation of the sampling distribution of the sample proportion, to 3 decimal places. 3) True or False? The sampling distribution of the sample proportion is approximately normal.
Suppose a random sample of size 60 is selected from a population with = 8. Find...
Suppose a random sample of size 60 is selected from a population with = 8. Find the value of the standard error of the mean in each of the following cases (use the finite population correction factor if appropriate). The population size is infinite (to 2 decimals). The population size is N = 50,000 (to 2 decimals). The population size is N = 5,000 (to 2 decimals). The population size is N = 500 (to 2 decimals).
a random sample size of 100 is selected from a population with P equals 40
a random sample size of 100 is selected from a population with P equals 40
Independent random samples of n1 = 700 and n2 = 520 observations were selected from binomial...
Independent random samples of n1 = 700 and n2 = 520 observations were selected from binomial populations 1 and 2, and x1 = 335 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.)
Independent random samples of n1 = 800 and n2 = 670 observations were selected from binomial...
Independent random samples of n1 = 800 and n2 = 670 observations were selected from binomial populations 1 and 2, and x1 = 336 and x2 = 378 successes were observed. (a) Find a 90% confidence interval for the difference (p1 − p2) in the two population proportions. (Round your answers to three decimal places.) to (b) What assumptions must you make for the confidence interval to be valid? (Select all that apply.)nq̂ > 5 for samples from both populationssymmetrical...
Suppose a random sample of size 60 is selected from a population with sigma=12. Find the...
Suppose a random sample of size 60 is selected from a population with sigma=12. Find the value of the standard error of the mean in each of the following cases (use the finite population correction factor if appropriate). a. The population size is infinite (to 2 decimals). b. The population size is N=50,000 (to 2 decimals). c. The population size is N=5000 (to 2 decimals). d. The population size is N=500 (to 2 decimals).
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 37 and 30 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.05. (a) The test statistic is   (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and conclude that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 23 and 13 successes, respectively. Test H0:(p1−p2)=0H0:(p1−p2)=0 against Ha:(p1−p2)>0Ha:(p1−p2)>0. Use α=0.03α=0.03 (a) The test statistic is (b) The P-value is
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT