In: Statistics and Probability
Use the sample information x=44, a=6, n=17 to calculate the following confidence intervals for u assuming the sample is from a normal population
(a) 90% confidence interval is ? to ?
(b) 95% confidence interval is ? to ?
(c) 99% confidence interval is ? to ?
Solution :
Given that,
a) Z/2 = Z0.05 = 1.645
Margin of error = E = Z/2
* (
/n)
= 1.645 * ( 6 / 17
)
= 2.3938
At 90% confidence interval estimate of the population mean is,
- E <
<
+ E
44 - 2.3938 < < 44 + 2.3938
(41.6062 <
< 46.3938)
b) Z/2 = Z0.025 = 1.96
Margin of error = E = Z/2
* (
/n)
= 1.96 * ( 6 / 17
)
= 2.8522
At 95% confidence interval estimate of the population mean is,
- E <
<
+ E
44 - 2.8522 < < 44 + 2.8522
(41.1478 <
< 46.8522)
c) Z/2 = Z0.005 = 2.576
Margin of error = E = Z/2
* (
/n)
= 2.576 * ( 6 / 17
)
= 3.7486
At 99% confidence interval estimate of the population mean is,
- E <
<
+ E
44 - 3.7486 < < 44 + 3.7486
(40.2514 <
< 47.7486)