Question

In: Statistics and Probability

Build a garch model using the following monthly change data for Mexico. Use R DATE INFLATION...

Build a garch model using the following monthly change data for Mexico. Use R
DATE INFLATION
ene-05 4.54
feb-05 4.27
mar-05 4.39
abr-05 4.6
may-05 4.6
jun-05 4.33
jul-05 4.47
ago-05 3.95
sep-05 3.51
oct-05 3.05
nov-05 2.91
dic-05 3.33
ene-06 3.94
feb-06 3.75
mar-06 3.41
abr-06 3.2
may-06 3
jun-06 3.18
jul-06 3.06
ago-06 3.47
sep-06 4.09
oct-06 4.29
nov-06 4.09
dic-06 4.05
ene-07 3.98
feb-07 4.11
mar-07 4.21
abr-07 3.99
may-07 3.95
jun-07 3.98
jul-07 4.14
ago-07 4.03
sep-07 3.79
oct-07 3.74
nov-07 3.93
dic-07 3.76
ene-08 3.7
feb-08 3.72
mar-08 4.25
abr-08 4.55
may-08 4.95
jun-08 5.26
jul-08 5.39
ago-08 5.57
sep-08 5.47
oct-08 5.78
nov-08 6.23
dic-08 6.53

Solutions

Expert Solution

R CODE:

inflation<-c(4.54,4.29,4.37,4.6,4.6,4.33,4.47,3.95,3.51,3.05,2.91,3.33,3.94,3.75,3.41,3.2,3,3.18,3.06,3.47,4.09,4.29,4.09,4.05,3.98,4.11,4.21,3.99,3.95,3.98,4.14,4.03,3.79,3.74,3.93,3.76,3.7,3.72,4.25,4.55,4.95,5.26,5.39,5.57,5.47,5.78,6.23,6.53)
library(tseries)
garch(inflation)

R OUTPUT:

***** ESTIMATION WITH ANALYTICAL GRADIENT *****


I INITIAL X(I) D(I)

1 5.977270e-01 1.000e+00
2 5.000000e-02 1.000e+00
3 5.000000e-02 1.000e+00

IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
0 1 2.726e+02
1 2 9.053e+01 6.68e-01 1.03e+01 7.9e-01 2.8e+03 1.0e+00 1.46e+04
2 4 9.030e+01 2.50e-03 2.71e-03 2.4e-02 2.0e+00 5.0e-02 1.35e-01
3 6 9.012e+01 2.04e-03 1.80e-03 2.3e-02 9.0e-02 5.0e-02 2.90e-03
4 7 9.002e+01 1.14e-03 8.86e-04 1.9e-02 2.0e+00 5.0e-02 1.24e-03
5 9 9.002e+01 2.43e-05 2.44e-05 9.4e-04 1.1e+01 2.3e-03 1.27e-04
6 11 9.001e+01 4.08e-05 4.08e-05 1.9e-03 2.1e+00 4.7e-03 1.02e-04
7 13 9.001e+01 6.91e-06 6.91e-06 3.9e-04 1.8e+01 9.4e-04 6.15e-05
8 15 9.001e+01 1.26e-05 1.26e-05 7.9e-04 3.0e+00 1.9e-03 5.55e-05
9 17 9.001e+01 2.32e-06 2.32e-06 1.6e-04 3.7e+01 3.7e-04 4.31e-05
10 19 9.001e+01 4.56e-07 4.56e-07 3.2e-05 1.8e+02 7.5e-05 4.13e-05
11 21 9.001e+01 9.03e-07 9.03e-07 6.5e-05 2.3e+01 1.5e-04 4.10e-05
12 23 9.001e+01 1.79e-07 1.79e-07 1.3e-05 4.3e+02 3.0e-05 4.01e-05
13 25 9.001e+01 3.58e-07 3.58e-07 2.6e-05 5.5e+01 6.0e-05 4.00e-05
14 27 9.001e+01 7.13e-08 7.13e-08 5.2e-06 1.1e+03 1.2e-05 3.97e-05
15 29 9.001e+01 1.43e-08 1.43e-08 1.0e-06 5.3e+03 2.4e-06 3.96e-05
16 32 9.001e+01 1.14e-07 1.14e-07 8.3e-06 1.7e+02 1.9e-05 3.96e-05
17 36 9.001e+01 2.28e-10 2.28e-10 1.7e-08 3.3e+05 3.8e-08 3.95e-05
18 38 9.001e+01 4.55e-10 4.55e-10 3.3e-08 4.2e+04 7.7e-08 3.95e-05
19 40 9.001e+01 9.11e-11 9.11e-11 6.7e-09 8.3e+05 1.5e-08 3.95e-05
20 43 9.001e+01 7.29e-10 7.29e-10 5.3e-08 2.6e+04 1.2e-07 3.95e-05
21 46 9.001e+01 1.46e-11 1.46e-11 1.1e-09 5.2e+06 2.5e-09 3.95e-05
22 48 9.001e+01 2.91e-12 2.91e-12 2.1e-10 2.6e+07 4.9e-10 3.95e-05
23 51 9.001e+01 2.33e-11 2.33e-11 1.7e-09 8.1e+05 3.9e-09 3.95e-05
24 54 9.001e+01 4.66e-13 4.66e-13 3.4e-11 1.6e+08 7.9e-11 3.95e-05
25 56 9.001e+01 9.30e-14 9.33e-14 6.8e-12 8.1e+08 1.6e-11 3.95e-05
26 58 9.001e+01 1.87e-13 1.87e-13 1.4e-11 1.0e+08 3.1e-11 3.95e-05
27 60 9.001e+01 3.73e-14 3.73e-14 2.7e-12 2.0e+09 6.3e-12 3.95e-05
28 62 9.001e+01 7.45e-14 7.46e-14 5.5e-12 2.5e+08 1.3e-11 3.95e-05
29 64 9.001e+01 1.48e-14 1.49e-14 1.1e-12 5.1e+09 2.5e-12 3.95e-05
30 66 9.001e+01 3.02e-14 2.98e-14 2.2e-12 6.4e+08 5.0e-12 3.95e-05
31 68 9.001e+01 5.92e-14 5.97e-14 4.4e-12 3.2e+08 1.0e-11 3.95e-05
32 70 9.001e+01 1.23e-14 1.19e-14 8.7e-13 6.4e+09 2.0e-12 3.95e-05
33 72 9.001e+01 2.53e-15 2.39e-15 1.7e-13 3.2e+10 4.0e-13 3.95e-05
34 74 9.001e+01 3.16e-16 4.78e-16 3.5e-14 1.6e+11 8.0e-14 3.95e-05
35 76 9.001e+01 0.00e+00 9.55e-17 7.0e-15 8.0e+11 1.6e-14 3.95e-05

***** FALSE CONVERGENCE *****

FUNCTION 9.000969e+01 RELDX 6.984e-15
FUNC. EVALS 76 GRAD. EVALS 35
PRELDF 9.551e-17 NPRELDF 3.951e-05

I FINAL X(I) D(I) G(I)

1 6.522721e-01 1.000e+00 1.496e-02
2 9.964029e-01 1.000e+00 2.675e-01
3 5.785579e-14 1.000e+00 4.625e-01


Call:
garch(x = inflation)

Coefficient(s):
a0 a1 b1
6.523e-01 9.964e-01 5.786e-14

Hopefully this will help you. In case of any query, do comment. If you are satisfied with the answer, give it a like. Thanks.


Related Solutions

Use the “home” data to build a regression model that predicts market as a function of...
Use the “home” data to build a regression model that predicts market as a function of square feet. Give a 99% confidence interval for the value of one square foot. (select the closest answer) Home Market Value House Age Square Feet Market Value 33 1,812 $90,000.00 32 1,914 $104,400.00 32 1,842 $93,300.00 33 1,812 $91,000.00 32 1,836 $101,900.00 33 2,028 $108,500.00 32 1,732 $87,600.00 33 1,850 $96,000.00 32 1,791 $89,200.00 33 1,666 $88,400.00 32 1,852 $100,800.00 32 1,620 $96,700.00 32...
Use the “home” data to build a regression model that predicts market as a function of...
Use the “home” data to build a regression model that predicts market as a function of square feet. Is the coefficient for square feet significant at a .05 level? Home Market Value House Age Square Feet Market Value 33 1,812 $90,000.00 32 1,914 $104,400.00 32 1,842 $93,300.00 33 1,812 $91,000.00 32 1,836 $101,900.00 33 2,028 $108,500.00 32 1,732 $87,600.00 33 1,850 $96,000.00 32 1,791 $89,200.00 33 1,666 $88,400.00 32 1,852 $100,800.00 32 1,620 $96,700.00 32 1,692 $87,500.00 32 2,372 $114,000.00...
R has many build-in dataset. The data mtcars is one of them. The following R code...
R has many build-in dataset. The data mtcars is one of them. The following R code read-in data and save the data to input.                   input <- mtcars[,c("am","cyl","hp","wt")]              Write a few line of R code to conduct a regression analysis with am as the response variable, and              cyl, hp, wt as explanation variables.
Using all the data below, construct an empirical model using a computational tool (matlab, or R,...
Using all the data below, construct an empirical model using a computational tool (matlab, or R, any preferred). explain your model. Data Description: These data are from a NIST study involving calibration of ozone monitors. The response variable (y) is the customer's measurement of ozone concentration and the predictor variable (x) is NIST's measurement of ozone concentration. MATLAB Row Vectors: xLst = [0.2, 337.4, 118.2, 884.6, 10.1, 226.5, 666.3, 996.3, 448.6, 777.0, 558.2, 0.4, 0.6, 775.5, 666.9, 338.0, 447.5, 11.6,...
Using the package “wooldridge’, and the data ‘hprice1’ (in R-Software) to estimate the model price =...
Using the package “wooldridge’, and the data ‘hprice1’ (in R-Software) to estimate the model price = β0 + β1sqrft + β2bdrms + u , where is the house price measured in thousands of dollars. 1. Write out the results in equation form. 2.  What is the estimated increase in price for a house with one more bedroom, holding square footage constant? 3. What is the estimated increase in price for a house with an additional bedroom that is 140 square feet...
using the mtcars data set data(mtcars) USE data in mtcars library in R 5.Use k means...
using the mtcars data set data(mtcars) USE data in mtcars library in R 5.Use k means cluster analysis. 6. Get cluster means. 7. Visualize the clustering result.
(Be sure to paste the R Console Output and code!!!) Using the following data and R,...
(Be sure to paste the R Console Output and code!!!) Using the following data and R, write a brief paragraph about whether the in-home treatment is equally effective as the out-of-home treatment for two separate groups. Here are the data. The outcome variable is level of anxiety after treatment on a scale from 1 to 10. In-Home Treatment Out-of-Home Treatment 3 7 4 6 1 7 1 8 1 7 3 6 3 5 6 6 5 4 1 2...
Compute the annual inflation rate by using the monthly inflation rates over the last (available) twelve...
Compute the annual inflation rate by using the monthly inflation rates over the last (available) twelve months.  Include the effect of compounding.
There are three columns of data: a monthly date, a closing price for an individual stock,...
There are three columns of data: a monthly date, a closing price for an individual stock, and the market close. Calculate a monthly return series from the closing monthly prices of both the market and the individual security. Calculate the arithmetic mean return and the standard deviation of the monthly return for both series. Calculate the geometric mean return for both series. Calculate the beta of the individual security. Date   Closing Price   Market Closing Price   Security Return   Market Return 12/1/2003  ...
Using a sample of 50 quarters of inflation data, you carry out an AR(2) model regression,...
Using a sample of 50 quarters of inflation data, you carry out an AR(2) model regression, and produce the following results: Coefficient Standard error Intercept 1.77 0 Inflation t-1 0.12 0.01 Inflation t-2 0.12 0.02 The two most recent quarterly annualized inflation observations in your data are 2.03 (second to last observation) and 2.18 (latest observation). Based on these results, what is your prediction for the rate of inflation at time 52 (two quarters in the future from your latest...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT