Question

In: Physics

A 82.9-kg man is standing on a frictionless ice surface when he throws a 1.70-kg book...

A 82.9-kg man is standing on a frictionless ice surface when he throws a 1.70-kg book horizontally at a speed of 13.0 m/s. With what speed does the man move across the ice as a result? Give your answer in m/s, and be sure to use three significant figures in your answer.

Solutions

Expert Solution


Related Solutions

A 60 kg archer, standing on frictionless ice, shoots a 120 g arrow at a speed...
A 60 kg archer, standing on frictionless ice, shoots a 120 g arrow at a speed of 95 m/s. a) Does the bow exert a constant force or a variable force on the arrow? b) Is this situation considered an isolated system or a non-isolated system? What other forces would you include in a free-body diagram? Would these other forces contribute to the velocity of either the arrow or the archer? c) What pair of forces exist that causes the...
A person with mass mp=80 kg is standing at rest on a horizontal, frictionless surface holding...
A person with mass mp=80 kg is standing at rest on a horizontal, frictionless surface holding a ball of wet clay with mass mg=10 kg . In front of the person is a large block with mass M=20 kg at rest next to a spring with stiffness k=100 N/m . The person throws the ball horizontally, it sticks to the block, and then ball and block slide and compress the spring a distance 1=0.75 m away from equilibrium before the...
A 2.00 kg textbook rests on a frictionless, horizontal surface. A cord attached to the book...
A 2.00 kg textbook rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.130 m, to a hanging book with mass 3.20 kg. The system is released from rest, and the books are observed to move 1.20 m in 0.850 s. Part A.) What is the tension in the part of the cord attached to the textbook? Part B.) What is the tension in the part of the cord attached...
A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal...
A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal force along an x axis is applied to the block. The force is given by ? ⃗(?) = (6.0?2 − 2?3)?̂, where the force in in newtons, x is in meters, and the initial position of the block is x = 0. (a) What is the work done in moving the block from x = 1.0 m to x = 3.0 m? (b) What...
Jack and Zack are standing on a crate at rest on a frictionless horizontal surface. Jack...
Jack and Zack are standing on a crate at rest on a frictionless horizontal surface. Jack has a mass of 70 kg, Zack has a mass of 45 kg, and the crate has a mass of 15 kg. In what follows, we will see that both jump of the crate. You may assume that they push themselves off with a speed of 4 m/s relative to the crate and in a direction that is essentially horizontal. 1) what is the...
A friend throws a heavy ball toward you while you are standing on smooth ice. You...
A friend throws a heavy ball toward you while you are standing on smooth ice. You can either catch the ball or deflect it back toward your friend. What should you do in order to maximize your speed right after your interaction with the ball? a. You should catch the ball. b. You should let the ball go past you without touching it. c. You should deflect the ball back toward your friend. d. More information is required to determine...
You drop a 1.70 kg book to a friend who stands on the ground at distance...
You drop a 1.70 kg book to a friend who stands on the ground at distance D = 12.0 m below. If your friend's outstretched hands are at distance d = 1.60 m above the ground (see the figure), (a) how much work Wg does the gravitational force do on the book as it drops to her hands? (b) What is the change ΔU in the gravitational potential energy of the book-Earth system during the drop? If the gravitational potential...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200- kg puck has a speed of 1.00 m/s at an angle of θ = 53.0° to the positive x axis. (a) Determine the velocity of the 0.300-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision. and please explain
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200- kg puck has a speed of 1.00 m/s at an angle of θ = 53.0° to the positive x axis. (a) Determine the velocity of the 0.300-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision. (4 points)
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg...
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the x-axis with a velocity of 9.0 m/s. After the collision, the 0.20-kg puck has a speed of 5.4 m/s at an angle of θ = 53° to the positive x-axis. a)Determine the velocity of the 0.30-kg puck after the collision. magnitude-? direction-? (from the positive X-axis) (b) Find the fraction of kinetic energy lost in the collision.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT